Metamath Proof Explorer


Definition df-cmn

Description: Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Assertion df-cmn CMnd = { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g𝑔 ) 𝑏 ) = ( 𝑏 ( +g𝑔 ) 𝑎 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmn CMnd
1 vg 𝑔
2 cmnd Mnd
3 va 𝑎
4 cbs Base
5 1 cv 𝑔
6 5 4 cfv ( Base ‘ 𝑔 )
7 vb 𝑏
8 3 cv 𝑎
9 cplusg +g
10 5 9 cfv ( +g𝑔 )
11 7 cv 𝑏
12 8 11 10 co ( 𝑎 ( +g𝑔 ) 𝑏 )
13 11 8 10 co ( 𝑏 ( +g𝑔 ) 𝑎 )
14 12 13 wceq ( 𝑎 ( +g𝑔 ) 𝑏 ) = ( 𝑏 ( +g𝑔 ) 𝑎 )
15 14 7 6 wral 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g𝑔 ) 𝑏 ) = ( 𝑏 ( +g𝑔 ) 𝑎 )
16 15 3 6 wral 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g𝑔 ) 𝑏 ) = ( 𝑏 ( +g𝑔 ) 𝑎 )
17 16 1 2 crab { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g𝑔 ) 𝑏 ) = ( 𝑏 ( +g𝑔 ) 𝑎 ) }
18 0 17 wceq CMnd = { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g𝑔 ) 𝑏 ) = ( 𝑏 ( +g𝑔 ) 𝑎 ) }