| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccmn | ⊢ CMnd | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cmnd | ⊢ Mnd | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑔 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑔 ) | 
						
							| 7 |  | vb | ⊢ 𝑏 | 
						
							| 8 | 3 | cv | ⊢ 𝑎 | 
						
							| 9 |  | cplusg | ⊢ +g | 
						
							| 10 | 5 9 | cfv | ⊢ ( +g ‘ 𝑔 ) | 
						
							| 11 | 7 | cv | ⊢ 𝑏 | 
						
							| 12 | 8 11 10 | co | ⊢ ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) | 
						
							| 13 | 11 8 10 | co | ⊢ ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) | 
						
							| 14 | 12 13 | wceq | ⊢ ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 )  =  ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) | 
						
							| 15 | 14 7 6 | wral | ⊢ ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 )  =  ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) | 
						
							| 16 | 15 3 6 | wral | ⊢ ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 )  =  ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) | 
						
							| 17 | 16 1 2 | crab | ⊢ { 𝑔  ∈  Mnd  ∣  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 )  =  ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) } | 
						
							| 18 | 0 17 | wceq | ⊢ CMnd  =  { 𝑔  ∈  Mnd  ∣  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∀ 𝑏  ∈  ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 )  =  ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) } |