Step |
Hyp |
Ref |
Expression |
0 |
|
ccmn |
⊢ CMnd |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cmnd |
⊢ Mnd |
3 |
|
va |
⊢ 𝑎 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑔 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
7 |
|
vb |
⊢ 𝑏 |
8 |
3
|
cv |
⊢ 𝑎 |
9 |
|
cplusg |
⊢ +g |
10 |
5 9
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
11 |
7
|
cv |
⊢ 𝑏 |
12 |
8 11 10
|
co |
⊢ ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) |
13 |
11 8 10
|
co |
⊢ ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
14 |
12 13
|
wceq |
⊢ ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
15 |
14 7 6
|
wral |
⊢ ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
16 |
15 3 6
|
wral |
⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) |
17 |
16 1 2
|
crab |
⊢ { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) } |
18 |
0 17
|
wceq |
⊢ CMnd = { 𝑔 ∈ Mnd ∣ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( 𝑎 ( +g ‘ 𝑔 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑔 ) 𝑎 ) } |