Metamath Proof Explorer


Definition df-cmp

Description: Definition of a compact topology. A topology is compact iff any open covering of its underlying set contains a finite subcovering (Heine-Borel property). Definition C''' of BourbakiTop1 p. I.59. Note: Bourbaki uses the term "quasi-compact" (saving "compact" for "compact Hausdorff"), but it is not the modern usage (which we follow). (Contributed by FL, 22-Dec-2008)

Ref Expression
Assertion df-cmp Comp = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmp Comp
1 vx 𝑥
2 ctop Top
3 vy 𝑦
4 1 cv 𝑥
5 4 cpw 𝒫 𝑥
6 4 cuni 𝑥
7 3 cv 𝑦
8 7 cuni 𝑦
9 6 8 wceq 𝑥 = 𝑦
10 vz 𝑧
11 7 cpw 𝒫 𝑦
12 cfn Fin
13 11 12 cin ( 𝒫 𝑦 ∩ Fin )
14 10 cv 𝑧
15 14 cuni 𝑧
16 6 15 wceq 𝑥 = 𝑧
17 16 10 13 wrex 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧
18 9 17 wi ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 )
19 18 3 5 wral 𝑦 ∈ 𝒫 𝑥 ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 )
20 19 1 2 crab { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ) }
21 0 20 wceq Comp = { 𝑥 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑥 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑥 = 𝑧 ) }