Metamath Proof Explorer


Definition df-cms

Description: Define the class of complete metric spaces. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion df-cms CMetSp = { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccms CMetSp
1 vw 𝑤
2 cms MetSp
3 cbs Base
4 1 cv 𝑤
5 4 3 cfv ( Base ‘ 𝑤 )
6 vb 𝑏
7 cds dist
8 4 7 cfv ( dist ‘ 𝑤 )
9 6 cv 𝑏
10 9 9 cxp ( 𝑏 × 𝑏 )
11 8 10 cres ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) )
12 ccmet CMet
13 9 12 cfv ( CMet ‘ 𝑏 )
14 11 13 wcel ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 )
15 14 6 5 wsbc [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 )
16 15 1 2 crab { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) }
17 0 16 wceq CMetSp = { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) }