Step |
Hyp |
Ref |
Expression |
0 |
|
ccms |
⊢ CMetSp |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cms |
⊢ MetSp |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑤 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
6 |
|
vb |
⊢ 𝑏 |
7 |
|
cds |
⊢ dist |
8 |
4 7
|
cfv |
⊢ ( dist ‘ 𝑤 ) |
9 |
6
|
cv |
⊢ 𝑏 |
10 |
9 9
|
cxp |
⊢ ( 𝑏 × 𝑏 ) |
11 |
8 10
|
cres |
⊢ ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) |
12 |
|
ccmet |
⊢ CMet |
13 |
9 12
|
cfv |
⊢ ( CMet ‘ 𝑏 ) |
14 |
11 13
|
wcel |
⊢ ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) |
15 |
14 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) |
16 |
15 1 2
|
crab |
⊢ { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) } |
17 |
0 16
|
wceq |
⊢ CMetSp = { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) } |