| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccms |
⊢ CMetSp |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cms |
⊢ MetSp |
| 3 |
|
cbs |
⊢ Base |
| 4 |
1
|
cv |
⊢ 𝑤 |
| 5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 6 |
|
vb |
⊢ 𝑏 |
| 7 |
|
cds |
⊢ dist |
| 8 |
4 7
|
cfv |
⊢ ( dist ‘ 𝑤 ) |
| 9 |
6
|
cv |
⊢ 𝑏 |
| 10 |
9 9
|
cxp |
⊢ ( 𝑏 × 𝑏 ) |
| 11 |
8 10
|
cres |
⊢ ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) |
| 12 |
|
ccmet |
⊢ CMet |
| 13 |
9 12
|
cfv |
⊢ ( CMet ‘ 𝑏 ) |
| 14 |
11 13
|
wcel |
⊢ ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) |
| 15 |
14 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) |
| 16 |
15 1 2
|
crab |
⊢ { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) } |
| 17 |
0 16
|
wceq |
⊢ CMetSp = { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) } |