Step |
Hyp |
Ref |
Expression |
0 |
|
ccmtN |
⊢ cm |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
vy |
⊢ 𝑦 |
5 |
3
|
cv |
⊢ 𝑥 |
6 |
|
cbs |
⊢ Base |
7 |
1
|
cv |
⊢ 𝑝 |
8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑝 ) |
9 |
5 8
|
wcel |
⊢ 𝑥 ∈ ( Base ‘ 𝑝 ) |
10 |
4
|
cv |
⊢ 𝑦 |
11 |
10 8
|
wcel |
⊢ 𝑦 ∈ ( Base ‘ 𝑝 ) |
12 |
|
cmee |
⊢ meet |
13 |
7 12
|
cfv |
⊢ ( meet ‘ 𝑝 ) |
14 |
5 10 13
|
co |
⊢ ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) |
15 |
|
cjn |
⊢ join |
16 |
7 15
|
cfv |
⊢ ( join ‘ 𝑝 ) |
17 |
|
coc |
⊢ oc |
18 |
7 17
|
cfv |
⊢ ( oc ‘ 𝑝 ) |
19 |
10 18
|
cfv |
⊢ ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) |
20 |
5 19 13
|
co |
⊢ ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) |
21 |
14 20 16
|
co |
⊢ ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) |
22 |
5 21
|
wceq |
⊢ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) |
23 |
9 11 22
|
w3a |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) |
24 |
23 3 4
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } |
25 |
1 2 24
|
cmpt |
⊢ ( 𝑝 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } ) |
26 |
0 25
|
wceq |
⊢ cm = ( 𝑝 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } ) |