| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							ccmtN | 
							⊢ cm  | 
						
						
							| 1 | 
							
								
							 | 
							vp | 
							⊢ 𝑝  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							⊢ V  | 
						
						
							| 3 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 4 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 5 | 
							
								3
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 6 | 
							
								
							 | 
							cbs | 
							⊢ Base  | 
						
						
							| 7 | 
							
								1
							 | 
							cv | 
							⊢ 𝑝  | 
						
						
							| 8 | 
							
								7 6
							 | 
							cfv | 
							⊢ ( Base ‘ 𝑝 )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							wcel | 
							⊢ 𝑥  ∈  ( Base ‘ 𝑝 )  | 
						
						
							| 10 | 
							
								4
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 11 | 
							
								10 8
							 | 
							wcel | 
							⊢ 𝑦  ∈  ( Base ‘ 𝑝 )  | 
						
						
							| 12 | 
							
								
							 | 
							cmee | 
							⊢ meet  | 
						
						
							| 13 | 
							
								7 12
							 | 
							cfv | 
							⊢ ( meet ‘ 𝑝 )  | 
						
						
							| 14 | 
							
								5 10 13
							 | 
							co | 
							⊢ ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 )  | 
						
						
							| 15 | 
							
								
							 | 
							cjn | 
							⊢ join  | 
						
						
							| 16 | 
							
								7 15
							 | 
							cfv | 
							⊢ ( join ‘ 𝑝 )  | 
						
						
							| 17 | 
							
								
							 | 
							coc | 
							⊢ oc  | 
						
						
							| 18 | 
							
								7 17
							 | 
							cfv | 
							⊢ ( oc ‘ 𝑝 )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							cfv | 
							⊢ ( ( oc ‘ 𝑝 ) ‘ 𝑦 )  | 
						
						
							| 20 | 
							
								5 19 13
							 | 
							co | 
							⊢ ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) )  | 
						
						
							| 21 | 
							
								14 20 16
							 | 
							co | 
							⊢ ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) )  | 
						
						
							| 22 | 
							
								5 21
							 | 
							wceq | 
							⊢ 𝑥  =  ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) )  | 
						
						
							| 23 | 
							
								9 11 22
							 | 
							w3a | 
							⊢ ( 𝑥  ∈  ( Base ‘ 𝑝 )  ∧  𝑦  ∈  ( Base ‘ 𝑝 )  ∧  𝑥  =  ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 24 | 
							
								23 3 4
							 | 
							copab | 
							⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( Base ‘ 𝑝 )  ∧  𝑦  ∈  ( Base ‘ 𝑝 )  ∧  𝑥  =  ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) }  | 
						
						
							| 25 | 
							
								1 2 24
							 | 
							cmpt | 
							⊢ ( 𝑝  ∈  V  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( Base ‘ 𝑝 )  ∧  𝑦  ∈  ( Base ‘ 𝑝 )  ∧  𝑥  =  ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } )  | 
						
						
							| 26 | 
							
								0 25
							 | 
							wceq | 
							⊢ cm  =  ( 𝑝  ∈  V  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ( Base ‘ 𝑝 )  ∧  𝑦  ∈  ( Base ‘ 𝑝 )  ∧  𝑥  =  ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } )  |