Metamath Proof Explorer


Definition df-cmtN

Description: Define the commutes relation for orthoposets. Definition of commutes in Kalmbach p. 20. (Contributed by NM, 6-Nov-2011)

Ref Expression
Assertion df-cmtN cm = ( 𝑝 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmtN cm
1 vp 𝑝
2 cvv V
3 vx 𝑥
4 vy 𝑦
5 3 cv 𝑥
6 cbs Base
7 1 cv 𝑝
8 7 6 cfv ( Base ‘ 𝑝 )
9 5 8 wcel 𝑥 ∈ ( Base ‘ 𝑝 )
10 4 cv 𝑦
11 10 8 wcel 𝑦 ∈ ( Base ‘ 𝑝 )
12 cmee meet
13 7 12 cfv ( meet ‘ 𝑝 )
14 5 10 13 co ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 )
15 cjn join
16 7 15 cfv ( join ‘ 𝑝 )
17 coc oc
18 7 17 cfv ( oc ‘ 𝑝 )
19 10 18 cfv ( ( oc ‘ 𝑝 ) ‘ 𝑦 )
20 5 19 13 co ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) )
21 14 20 16 co ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) )
22 5 21 wceq 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) )
23 9 11 22 w3a ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) )
24 23 3 4 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) }
25 1 2 24 cmpt ( 𝑝 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } )
26 0 25 wceq cm = ( 𝑝 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ∧ 𝑥 = ( ( 𝑥 ( meet ‘ 𝑝 ) 𝑦 ) ( join ‘ 𝑝 ) ( 𝑥 ( meet ‘ 𝑝 ) ( ( oc ‘ 𝑝 ) ‘ 𝑦 ) ) ) ) } )