| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccn |
⊢ Cn |
| 1 |
|
vj |
⊢ 𝑗 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vk |
⊢ 𝑘 |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
3
|
cv |
⊢ 𝑘 |
| 6 |
5
|
cuni |
⊢ ∪ 𝑘 |
| 7 |
|
cmap |
⊢ ↑m |
| 8 |
1
|
cv |
⊢ 𝑗 |
| 9 |
8
|
cuni |
⊢ ∪ 𝑗 |
| 10 |
6 9 7
|
co |
⊢ ( ∪ 𝑘 ↑m ∪ 𝑗 ) |
| 11 |
|
vy |
⊢ 𝑦 |
| 12 |
4
|
cv |
⊢ 𝑓 |
| 13 |
12
|
ccnv |
⊢ ◡ 𝑓 |
| 14 |
11
|
cv |
⊢ 𝑦 |
| 15 |
13 14
|
cima |
⊢ ( ◡ 𝑓 “ 𝑦 ) |
| 16 |
15 8
|
wcel |
⊢ ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 |
| 17 |
16 11 5
|
wral |
⊢ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 |
| 18 |
17 4 10
|
crab |
⊢ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } |
| 19 |
1 3 2 2 18
|
cmpo |
⊢ ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } ) |
| 20 |
0 19
|
wceq |
⊢ Cn = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } ) |