Metamath Proof Explorer


Definition df-cncf

Description: Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007)

Ref Expression
Assertion df-cncf cn→ = ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏m 𝑎 ) ∣ ∀ 𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ( ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccncf cn
1 va 𝑎
2 cc
3 2 cpw 𝒫 ℂ
4 vb 𝑏
5 vf 𝑓
6 4 cv 𝑏
7 cmap m
8 1 cv 𝑎
9 6 8 7 co ( 𝑏m 𝑎 )
10 vx 𝑥
11 ve 𝑒
12 crp +
13 vd 𝑑
14 vy 𝑦
15 cabs abs
16 10 cv 𝑥
17 cmin
18 14 cv 𝑦
19 16 18 17 co ( 𝑥𝑦 )
20 19 15 cfv ( abs ‘ ( 𝑥𝑦 ) )
21 clt <
22 13 cv 𝑑
23 20 22 21 wbr ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑
24 5 cv 𝑓
25 16 24 cfv ( 𝑓𝑥 )
26 18 24 cfv ( 𝑓𝑦 )
27 25 26 17 co ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) )
28 27 15 cfv ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) )
29 11 cv 𝑒
30 28 29 21 wbr ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒
31 23 30 wi ( ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒 )
32 31 14 8 wral 𝑦𝑎 ( ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒 )
33 32 13 12 wrex 𝑑 ∈ ℝ+𝑦𝑎 ( ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒 )
34 33 11 12 wral 𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ( ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒 )
35 34 10 8 wral 𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ( ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒 )
36 35 5 9 crab { 𝑓 ∈ ( 𝑏m 𝑎 ) ∣ ∀ 𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ( ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒 ) }
37 1 4 3 3 36 cmpo ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏m 𝑎 ) ∣ ∀ 𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ( ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒 ) } )
38 0 37 wceq cn→ = ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏m 𝑎 ) ∣ ∀ 𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ( ( abs ‘ ( 𝑥𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓𝑥 ) − ( 𝑓𝑦 ) ) ) < 𝑒 ) } )