| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccnf | ⊢  CNF | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | con0 | ⊢ On | 
						
							| 3 |  | vy | ⊢ 𝑦 | 
						
							| 4 |  | vf | ⊢ 𝑓 | 
						
							| 5 |  | vg | ⊢ 𝑔 | 
						
							| 6 | 1 | cv | ⊢ 𝑥 | 
						
							| 7 |  | cmap | ⊢  ↑m | 
						
							| 8 | 3 | cv | ⊢ 𝑦 | 
						
							| 9 | 6 8 7 | co | ⊢ ( 𝑥  ↑m  𝑦 ) | 
						
							| 10 | 5 | cv | ⊢ 𝑔 | 
						
							| 11 |  | cfsupp | ⊢  finSupp | 
						
							| 12 |  | c0 | ⊢ ∅ | 
						
							| 13 | 10 12 11 | wbr | ⊢ 𝑔  finSupp  ∅ | 
						
							| 14 | 13 5 9 | crab | ⊢ { 𝑔  ∈  ( 𝑥  ↑m  𝑦 )  ∣  𝑔  finSupp  ∅ } | 
						
							| 15 |  | cep | ⊢  E | 
						
							| 16 | 4 | cv | ⊢ 𝑓 | 
						
							| 17 |  | csupp | ⊢  supp | 
						
							| 18 | 16 12 17 | co | ⊢ ( 𝑓  supp  ∅ ) | 
						
							| 19 | 18 15 | coi | ⊢ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) ) | 
						
							| 20 |  | vh | ⊢ ℎ | 
						
							| 21 |  | vk | ⊢ 𝑘 | 
						
							| 22 |  | cvv | ⊢ V | 
						
							| 23 |  | vz | ⊢ 𝑧 | 
						
							| 24 |  | coe | ⊢  ↑o | 
						
							| 25 | 20 | cv | ⊢ ℎ | 
						
							| 26 | 21 | cv | ⊢ 𝑘 | 
						
							| 27 | 26 25 | cfv | ⊢ ( ℎ ‘ 𝑘 ) | 
						
							| 28 | 6 27 24 | co | ⊢ ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) ) | 
						
							| 29 |  | comu | ⊢  ·o | 
						
							| 30 | 27 16 | cfv | ⊢ ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) | 
						
							| 31 | 28 30 29 | co | ⊢ ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) ) | 
						
							| 32 |  | coa | ⊢  +o | 
						
							| 33 | 23 | cv | ⊢ 𝑧 | 
						
							| 34 | 31 33 32 | co | ⊢ ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) | 
						
							| 35 | 21 23 22 22 34 | cmpo | ⊢ ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) | 
						
							| 36 | 35 12 | cseqom | ⊢ seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) | 
						
							| 37 | 25 | cdm | ⊢ dom  ℎ | 
						
							| 38 | 37 36 | cfv | ⊢ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) | 
						
							| 39 | 20 19 38 | csb | ⊢ ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) | 
						
							| 40 | 4 14 39 | cmpt | ⊢ ( 𝑓  ∈  { 𝑔  ∈  ( 𝑥  ↑m  𝑦 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) | 
						
							| 41 | 1 3 2 2 40 | cmpo | ⊢ ( 𝑥  ∈  On ,  𝑦  ∈  On  ↦  ( 𝑓  ∈  { 𝑔  ∈  ( 𝑥  ↑m  𝑦 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ) | 
						
							| 42 | 0 41 | wceq | ⊢  CNF   =  ( 𝑥  ∈  On ,  𝑦  ∈  On  ↦  ( 𝑓  ∈  { 𝑔  ∈  ( 𝑥  ↑m  𝑦 )  ∣  𝑔  finSupp  ∅ }  ↦  ⦋ OrdIso (  E  ,  ( 𝑓  supp  ∅ ) )  /  ℎ ⦌ ( seqω ( ( 𝑘  ∈  V ,  𝑧  ∈  V  ↦  ( ( ( 𝑥  ↑o  ( ℎ ‘ 𝑘 ) )  ·o  ( 𝑓 ‘ ( ℎ ‘ 𝑘 ) ) )  +o  𝑧 ) ) ,  ∅ ) ‘ dom  ℎ ) ) ) |