Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.
The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnfld | ⊢ ℂfld = ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccnfld | ⊢ ℂfld | |
| 1 | cbs | ⊢ Base | |
| 2 | cnx | ⊢ ndx | |
| 3 | 2 1 | cfv | ⊢ ( Base ‘ ndx ) |
| 4 | cc | ⊢ ℂ | |
| 5 | 3 4 | cop | ⊢ 〈 ( Base ‘ ndx ) , ℂ 〉 |
| 6 | cplusg | ⊢ +g | |
| 7 | 2 6 | cfv | ⊢ ( +g ‘ ndx ) |
| 8 | vx | ⊢ 𝑥 | |
| 9 | vy | ⊢ 𝑦 | |
| 10 | 8 | cv | ⊢ 𝑥 |
| 11 | caddc | ⊢ + | |
| 12 | 9 | cv | ⊢ 𝑦 |
| 13 | 10 12 11 | co | ⊢ ( 𝑥 + 𝑦 ) |
| 14 | 8 9 4 4 13 | cmpo | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) |
| 15 | 7 14 | cop | ⊢ 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 |
| 16 | cmulr | ⊢ .r | |
| 17 | 2 16 | cfv | ⊢ ( .r ‘ ndx ) |
| 18 | cmul | ⊢ · | |
| 19 | 10 12 18 | co | ⊢ ( 𝑥 · 𝑦 ) |
| 20 | 8 9 4 4 19 | cmpo | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) |
| 21 | 17 20 | cop | ⊢ 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 |
| 22 | 5 15 21 | ctp | ⊢ { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } |
| 23 | cstv | ⊢ *𝑟 | |
| 24 | 2 23 | cfv | ⊢ ( *𝑟 ‘ ndx ) |
| 25 | ccj | ⊢ ∗ | |
| 26 | 24 25 | cop | ⊢ 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 |
| 27 | 26 | csn | ⊢ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } |
| 28 | 22 27 | cun | ⊢ ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) |
| 29 | cts | ⊢ TopSet | |
| 30 | 2 29 | cfv | ⊢ ( TopSet ‘ ndx ) |
| 31 | cmopn | ⊢ MetOpen | |
| 32 | cabs | ⊢ abs | |
| 33 | cmin | ⊢ − | |
| 34 | 32 33 | ccom | ⊢ ( abs ∘ − ) |
| 35 | 34 31 | cfv | ⊢ ( MetOpen ‘ ( abs ∘ − ) ) |
| 36 | 30 35 | cop | ⊢ 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 |
| 37 | cple | ⊢ le | |
| 38 | 2 37 | cfv | ⊢ ( le ‘ ndx ) |
| 39 | cle | ⊢ ≤ | |
| 40 | 38 39 | cop | ⊢ 〈 ( le ‘ ndx ) , ≤ 〉 |
| 41 | cds | ⊢ dist | |
| 42 | 2 41 | cfv | ⊢ ( dist ‘ ndx ) |
| 43 | 42 34 | cop | ⊢ 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 |
| 44 | 36 40 43 | ctp | ⊢ { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } |
| 45 | cunif | ⊢ UnifSet | |
| 46 | 2 45 | cfv | ⊢ ( UnifSet ‘ ndx ) |
| 47 | cmetu | ⊢ metUnif | |
| 48 | 34 47 | cfv | ⊢ ( metUnif ‘ ( abs ∘ − ) ) |
| 49 | 46 48 | cop | ⊢ 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 |
| 50 | 49 | csn | ⊢ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } |
| 51 | 44 50 | cun | ⊢ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) |
| 52 | 28 51 | cun | ⊢ ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) |
| 53 | 0 52 | wceq | ⊢ ℂfld = ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) |