Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.
The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cnfld | ⊢ ℂfld = ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , · 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccnfld | ⊢ ℂfld | |
1 | cbs | ⊢ Base | |
2 | cnx | ⊢ ndx | |
3 | 2 1 | cfv | ⊢ ( Base ‘ ndx ) |
4 | cc | ⊢ ℂ | |
5 | 3 4 | cop | ⊢ 〈 ( Base ‘ ndx ) , ℂ 〉 |
6 | cplusg | ⊢ +g | |
7 | 2 6 | cfv | ⊢ ( +g ‘ ndx ) |
8 | caddc | ⊢ + | |
9 | 7 8 | cop | ⊢ 〈 ( +g ‘ ndx ) , + 〉 |
10 | cmulr | ⊢ .r | |
11 | 2 10 | cfv | ⊢ ( .r ‘ ndx ) |
12 | cmul | ⊢ · | |
13 | 11 12 | cop | ⊢ 〈 ( .r ‘ ndx ) , · 〉 |
14 | 5 9 13 | ctp | ⊢ { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , · 〉 } |
15 | cstv | ⊢ *𝑟 | |
16 | 2 15 | cfv | ⊢ ( *𝑟 ‘ ndx ) |
17 | ccj | ⊢ ∗ | |
18 | 16 17 | cop | ⊢ 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 |
19 | 18 | csn | ⊢ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } |
20 | 14 19 | cun | ⊢ ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , · 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) |
21 | cts | ⊢ TopSet | |
22 | 2 21 | cfv | ⊢ ( TopSet ‘ ndx ) |
23 | cmopn | ⊢ MetOpen | |
24 | cabs | ⊢ abs | |
25 | cmin | ⊢ − | |
26 | 24 25 | ccom | ⊢ ( abs ∘ − ) |
27 | 26 23 | cfv | ⊢ ( MetOpen ‘ ( abs ∘ − ) ) |
28 | 22 27 | cop | ⊢ 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 |
29 | cple | ⊢ le | |
30 | 2 29 | cfv | ⊢ ( le ‘ ndx ) |
31 | cle | ⊢ ≤ | |
32 | 30 31 | cop | ⊢ 〈 ( le ‘ ndx ) , ≤ 〉 |
33 | cds | ⊢ dist | |
34 | 2 33 | cfv | ⊢ ( dist ‘ ndx ) |
35 | 34 26 | cop | ⊢ 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 |
36 | 28 32 35 | ctp | ⊢ { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } |
37 | cunif | ⊢ UnifSet | |
38 | 2 37 | cfv | ⊢ ( UnifSet ‘ ndx ) |
39 | cmetu | ⊢ metUnif | |
40 | 26 39 | cfv | ⊢ ( metUnif ‘ ( abs ∘ − ) ) |
41 | 38 40 | cop | ⊢ 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 |
42 | 41 | csn | ⊢ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } |
43 | 36 42 | cun | ⊢ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) |
44 | 20 43 | cun | ⊢ ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , · 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) |
45 | 0 44 | wceq | ⊢ ℂfld = ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , · 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) |