Metamath Proof Explorer


Definition df-cnfn

Description: Define the set of continuous functionals on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-cnfn ContFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnfn ContFn
1 vt 𝑡
2 cc
3 cmap m
4 chba
5 2 4 3 co ( ℂ ↑m ℋ )
6 vx 𝑥
7 vy 𝑦
8 crp +
9 vz 𝑧
10 vw 𝑤
11 cno norm
12 10 cv 𝑤
13 cmv
14 6 cv 𝑥
15 12 14 13 co ( 𝑤 𝑥 )
16 15 11 cfv ( norm ‘ ( 𝑤 𝑥 ) )
17 clt <
18 9 cv 𝑧
19 16 18 17 wbr ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧
20 cabs abs
21 1 cv 𝑡
22 12 21 cfv ( 𝑡𝑤 )
23 cmin
24 14 21 cfv ( 𝑡𝑥 )
25 22 24 23 co ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) )
26 25 20 cfv ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) )
27 7 cv 𝑦
28 26 27 17 wbr ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦
29 19 28 wi ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
30 29 10 4 wral 𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
31 30 9 8 wrex 𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
32 31 7 8 wral 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
33 32 6 4 wral 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
34 33 1 5 crab { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) }
35 0 34 wceq ContFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) }