| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccnfn | ⊢ ContFn | 
						
							| 1 |  | vt | ⊢ 𝑡 | 
						
							| 2 |  | cc | ⊢ ℂ | 
						
							| 3 |  | cmap | ⊢  ↑m | 
						
							| 4 |  | chba | ⊢  ℋ | 
						
							| 5 | 2 4 3 | co | ⊢ ( ℂ  ↑m   ℋ ) | 
						
							| 6 |  | vx | ⊢ 𝑥 | 
						
							| 7 |  | vy | ⊢ 𝑦 | 
						
							| 8 |  | crp | ⊢ ℝ+ | 
						
							| 9 |  | vz | ⊢ 𝑧 | 
						
							| 10 |  | vw | ⊢ 𝑤 | 
						
							| 11 |  | cno | ⊢ normℎ | 
						
							| 12 | 10 | cv | ⊢ 𝑤 | 
						
							| 13 |  | cmv | ⊢  −ℎ | 
						
							| 14 | 6 | cv | ⊢ 𝑥 | 
						
							| 15 | 12 14 13 | co | ⊢ ( 𝑤  −ℎ  𝑥 ) | 
						
							| 16 | 15 11 | cfv | ⊢ ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) ) | 
						
							| 17 |  | clt | ⊢  < | 
						
							| 18 | 9 | cv | ⊢ 𝑧 | 
						
							| 19 | 16 18 17 | wbr | ⊢ ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧 | 
						
							| 20 |  | cabs | ⊢ abs | 
						
							| 21 | 1 | cv | ⊢ 𝑡 | 
						
							| 22 | 12 21 | cfv | ⊢ ( 𝑡 ‘ 𝑤 ) | 
						
							| 23 |  | cmin | ⊢  − | 
						
							| 24 | 14 21 | cfv | ⊢ ( 𝑡 ‘ 𝑥 ) | 
						
							| 25 | 22 24 23 | co | ⊢ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) | 
						
							| 26 | 25 20 | cfv | ⊢ ( abs ‘ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) ) | 
						
							| 27 | 7 | cv | ⊢ 𝑦 | 
						
							| 28 | 26 27 17 | wbr | ⊢ ( abs ‘ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 | 
						
							| 29 | 19 28 | wi | ⊢ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) | 
						
							| 30 | 29 10 4 | wral | ⊢ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) | 
						
							| 31 | 30 9 8 | wrex | ⊢ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) | 
						
							| 32 | 31 7 8 | wral | ⊢ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) | 
						
							| 33 | 32 6 4 | wral | ⊢ ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) | 
						
							| 34 | 33 1 5 | crab | ⊢ { 𝑡  ∈  ( ℂ  ↑m   ℋ )  ∣  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) } | 
						
							| 35 | 0 34 | wceq | ⊢ ContFn  =  { 𝑡  ∈  ( ℂ  ↑m   ℋ )  ∣  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈  ℝ+ ∃ 𝑧  ∈  ℝ+ ∀ 𝑤  ∈   ℋ ( ( normℎ ‘ ( 𝑤  −ℎ  𝑥 ) )  <  𝑧  →  ( abs ‘ ( ( 𝑡 ‘ 𝑤 )  −  ( 𝑡 ‘ 𝑥 ) ) )  <  𝑦 ) } |