| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccnfn |
⊢ ContFn |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
|
cmap |
⊢ ↑m |
| 4 |
|
chba |
⊢ ℋ |
| 5 |
2 4 3
|
co |
⊢ ( ℂ ↑m ℋ ) |
| 6 |
|
vx |
⊢ 𝑥 |
| 7 |
|
vy |
⊢ 𝑦 |
| 8 |
|
crp |
⊢ ℝ+ |
| 9 |
|
vz |
⊢ 𝑧 |
| 10 |
|
vw |
⊢ 𝑤 |
| 11 |
|
cno |
⊢ normℎ |
| 12 |
10
|
cv |
⊢ 𝑤 |
| 13 |
|
cmv |
⊢ −ℎ |
| 14 |
6
|
cv |
⊢ 𝑥 |
| 15 |
12 14 13
|
co |
⊢ ( 𝑤 −ℎ 𝑥 ) |
| 16 |
15 11
|
cfv |
⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) |
| 17 |
|
clt |
⊢ < |
| 18 |
9
|
cv |
⊢ 𝑧 |
| 19 |
16 18 17
|
wbr |
⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 |
| 20 |
|
cabs |
⊢ abs |
| 21 |
1
|
cv |
⊢ 𝑡 |
| 22 |
12 21
|
cfv |
⊢ ( 𝑡 ‘ 𝑤 ) |
| 23 |
|
cmin |
⊢ − |
| 24 |
14 21
|
cfv |
⊢ ( 𝑡 ‘ 𝑥 ) |
| 25 |
22 24 23
|
co |
⊢ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) |
| 26 |
25 20
|
cfv |
⊢ ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) |
| 27 |
7
|
cv |
⊢ 𝑦 |
| 28 |
26 27 17
|
wbr |
⊢ ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 |
| 29 |
19 28
|
wi |
⊢ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 30 |
29 10 4
|
wral |
⊢ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 31 |
30 9 8
|
wrex |
⊢ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 32 |
31 7 8
|
wral |
⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 33 |
32 6 4
|
wral |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 34 |
33 1 5
|
crab |
⊢ { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |
| 35 |
0 34
|
wceq |
⊢ ContFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |