| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccop |
⊢ ContOp |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
chba |
⊢ ℋ |
| 3 |
|
cmap |
⊢ ↑m |
| 4 |
2 2 3
|
co |
⊢ ( ℋ ↑m ℋ ) |
| 5 |
|
vx |
⊢ 𝑥 |
| 6 |
|
vy |
⊢ 𝑦 |
| 7 |
|
crp |
⊢ ℝ+ |
| 8 |
|
vz |
⊢ 𝑧 |
| 9 |
|
vw |
⊢ 𝑤 |
| 10 |
|
cno |
⊢ normℎ |
| 11 |
9
|
cv |
⊢ 𝑤 |
| 12 |
|
cmv |
⊢ −ℎ |
| 13 |
5
|
cv |
⊢ 𝑥 |
| 14 |
11 13 12
|
co |
⊢ ( 𝑤 −ℎ 𝑥 ) |
| 15 |
14 10
|
cfv |
⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) |
| 16 |
|
clt |
⊢ < |
| 17 |
8
|
cv |
⊢ 𝑧 |
| 18 |
15 17 16
|
wbr |
⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 |
| 19 |
1
|
cv |
⊢ 𝑡 |
| 20 |
11 19
|
cfv |
⊢ ( 𝑡 ‘ 𝑤 ) |
| 21 |
13 19
|
cfv |
⊢ ( 𝑡 ‘ 𝑥 ) |
| 22 |
20 21 12
|
co |
⊢ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) |
| 23 |
22 10
|
cfv |
⊢ ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) |
| 24 |
6
|
cv |
⊢ 𝑦 |
| 25 |
23 24 16
|
wbr |
⊢ ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 |
| 26 |
18 25
|
wi |
⊢ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 27 |
26 9 2
|
wral |
⊢ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 28 |
27 8 7
|
wrex |
⊢ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 29 |
28 6 7
|
wral |
⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 30 |
29 5 2
|
wral |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 31 |
30 1 4
|
crab |
⊢ { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |
| 32 |
0 31
|
wceq |
⊢ ContOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |