Metamath Proof Explorer


Definition df-cnop

Description: Define the set of continuous operators on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-cnop ContOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccop ContOp
1 vt 𝑡
2 chba
3 cmap m
4 2 2 3 co ( ℋ ↑m ℋ )
5 vx 𝑥
6 vy 𝑦
7 crp +
8 vz 𝑧
9 vw 𝑤
10 cno norm
11 9 cv 𝑤
12 cmv
13 5 cv 𝑥
14 11 13 12 co ( 𝑤 𝑥 )
15 14 10 cfv ( norm ‘ ( 𝑤 𝑥 ) )
16 clt <
17 8 cv 𝑧
18 15 17 16 wbr ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧
19 1 cv 𝑡
20 11 19 cfv ( 𝑡𝑤 )
21 13 19 cfv ( 𝑡𝑥 )
22 20 21 12 co ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) )
23 22 10 cfv ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) )
24 6 cv 𝑦
25 23 24 16 wbr ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦
26 18 25 wi ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
27 26 9 2 wral 𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
28 27 8 7 wrex 𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
29 28 6 7 wral 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
30 29 5 2 wral 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 )
31 30 1 4 crab { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) }
32 0 31 wceq ContOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ( ( norm ‘ ( 𝑤 𝑥 ) ) < 𝑧 → ( norm ‘ ( ( 𝑡𝑤 ) − ( 𝑡𝑥 ) ) ) < 𝑦 ) }