Step |
Hyp |
Ref |
Expression |
0 |
|
ccop |
⊢ ContOp |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
chba |
⊢ ℋ |
3 |
|
cmap |
⊢ ↑m |
4 |
2 2 3
|
co |
⊢ ( ℋ ↑m ℋ ) |
5 |
|
vx |
⊢ 𝑥 |
6 |
|
vy |
⊢ 𝑦 |
7 |
|
crp |
⊢ ℝ+ |
8 |
|
vz |
⊢ 𝑧 |
9 |
|
vw |
⊢ 𝑤 |
10 |
|
cno |
⊢ normℎ |
11 |
9
|
cv |
⊢ 𝑤 |
12 |
|
cmv |
⊢ −ℎ |
13 |
5
|
cv |
⊢ 𝑥 |
14 |
11 13 12
|
co |
⊢ ( 𝑤 −ℎ 𝑥 ) |
15 |
14 10
|
cfv |
⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) |
16 |
|
clt |
⊢ < |
17 |
8
|
cv |
⊢ 𝑧 |
18 |
15 17 16
|
wbr |
⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 |
19 |
1
|
cv |
⊢ 𝑡 |
20 |
11 19
|
cfv |
⊢ ( 𝑡 ‘ 𝑤 ) |
21 |
13 19
|
cfv |
⊢ ( 𝑡 ‘ 𝑥 ) |
22 |
20 21 12
|
co |
⊢ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) |
23 |
22 10
|
cfv |
⊢ ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) |
24 |
6
|
cv |
⊢ 𝑦 |
25 |
23 24 16
|
wbr |
⊢ ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 |
26 |
18 25
|
wi |
⊢ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
27 |
26 9 2
|
wral |
⊢ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
28 |
27 8 7
|
wrex |
⊢ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
29 |
28 6 7
|
wral |
⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
30 |
29 5 2
|
wral |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
31 |
30 1 4
|
crab |
⊢ { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |
32 |
0 31
|
wceq |
⊢ ContOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( normℎ ‘ ( ( 𝑡 ‘ 𝑤 ) −ℎ ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |