Metamath Proof Explorer


Definition df-cnp

Description: Define a function on two topologies whose value is the set of continuous mappings at a specified point in the first topology. Based on Theorem 7.2(g) of Munkres p. 107. (Contributed by NM, 17-Oct-2006)

Ref Expression
Assertion df-cnp CnP = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 𝑗 ↦ { 𝑓 ∈ ( 𝑘m 𝑗 ) ∣ ∀ 𝑦𝑘 ( ( 𝑓𝑥 ) ∈ 𝑦 → ∃ 𝑔𝑗 ( 𝑥𝑔 ∧ ( 𝑓𝑔 ) ⊆ 𝑦 ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnp CnP
1 vj 𝑗
2 ctop Top
3 vk 𝑘
4 vx 𝑥
5 1 cv 𝑗
6 5 cuni 𝑗
7 vf 𝑓
8 3 cv 𝑘
9 8 cuni 𝑘
10 cmap m
11 9 6 10 co ( 𝑘m 𝑗 )
12 vy 𝑦
13 7 cv 𝑓
14 4 cv 𝑥
15 14 13 cfv ( 𝑓𝑥 )
16 12 cv 𝑦
17 15 16 wcel ( 𝑓𝑥 ) ∈ 𝑦
18 vg 𝑔
19 18 cv 𝑔
20 14 19 wcel 𝑥𝑔
21 13 19 cima ( 𝑓𝑔 )
22 21 16 wss ( 𝑓𝑔 ) ⊆ 𝑦
23 20 22 wa ( 𝑥𝑔 ∧ ( 𝑓𝑔 ) ⊆ 𝑦 )
24 23 18 5 wrex 𝑔𝑗 ( 𝑥𝑔 ∧ ( 𝑓𝑔 ) ⊆ 𝑦 )
25 17 24 wi ( ( 𝑓𝑥 ) ∈ 𝑦 → ∃ 𝑔𝑗 ( 𝑥𝑔 ∧ ( 𝑓𝑔 ) ⊆ 𝑦 ) )
26 25 12 8 wral 𝑦𝑘 ( ( 𝑓𝑥 ) ∈ 𝑦 → ∃ 𝑔𝑗 ( 𝑥𝑔 ∧ ( 𝑓𝑔 ) ⊆ 𝑦 ) )
27 26 7 11 crab { 𝑓 ∈ ( 𝑘m 𝑗 ) ∣ ∀ 𝑦𝑘 ( ( 𝑓𝑥 ) ∈ 𝑦 → ∃ 𝑔𝑗 ( 𝑥𝑔 ∧ ( 𝑓𝑔 ) ⊆ 𝑦 ) ) }
28 4 6 27 cmpt ( 𝑥 𝑗 ↦ { 𝑓 ∈ ( 𝑘m 𝑗 ) ∣ ∀ 𝑦𝑘 ( ( 𝑓𝑥 ) ∈ 𝑦 → ∃ 𝑔𝑗 ( 𝑥𝑔 ∧ ( 𝑓𝑔 ) ⊆ 𝑦 ) ) } )
29 1 3 2 2 28 cmpo ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 𝑗 ↦ { 𝑓 ∈ ( 𝑘m 𝑗 ) ∣ ∀ 𝑦𝑘 ( ( 𝑓𝑥 ) ∈ 𝑦 → ∃ 𝑔𝑗 ( 𝑥𝑔 ∧ ( 𝑓𝑔 ) ⊆ 𝑦 ) ) } ) )
30 0 29 wceq CnP = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 𝑗 ↦ { 𝑓 ∈ ( 𝑘m 𝑗 ) ∣ ∀ 𝑦𝑘 ( ( 𝑓𝑥 ) ∈ 𝑦 → ∃ 𝑔𝑗 ( 𝑥𝑔 ∧ ( 𝑓𝑔 ) ⊆ 𝑦 ) ) } ) )