| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccnp |
⊢ CnP |
| 1 |
|
vj |
⊢ 𝑗 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vk |
⊢ 𝑘 |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
1
|
cv |
⊢ 𝑗 |
| 6 |
5
|
cuni |
⊢ ∪ 𝑗 |
| 7 |
|
vf |
⊢ 𝑓 |
| 8 |
3
|
cv |
⊢ 𝑘 |
| 9 |
8
|
cuni |
⊢ ∪ 𝑘 |
| 10 |
|
cmap |
⊢ ↑m |
| 11 |
9 6 10
|
co |
⊢ ( ∪ 𝑘 ↑m ∪ 𝑗 ) |
| 12 |
|
vy |
⊢ 𝑦 |
| 13 |
7
|
cv |
⊢ 𝑓 |
| 14 |
4
|
cv |
⊢ 𝑥 |
| 15 |
14 13
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 16 |
12
|
cv |
⊢ 𝑦 |
| 17 |
15 16
|
wcel |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 |
| 18 |
|
vg |
⊢ 𝑔 |
| 19 |
18
|
cv |
⊢ 𝑔 |
| 20 |
14 19
|
wcel |
⊢ 𝑥 ∈ 𝑔 |
| 21 |
13 19
|
cima |
⊢ ( 𝑓 “ 𝑔 ) |
| 22 |
21 16
|
wss |
⊢ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 |
| 23 |
20 22
|
wa |
⊢ ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) |
| 24 |
23 18 5
|
wrex |
⊢ ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) |
| 25 |
17 24
|
wi |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) |
| 26 |
25 12 8
|
wral |
⊢ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) |
| 27 |
26 7 11
|
crab |
⊢ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) } |
| 28 |
4 6 27
|
cmpt |
⊢ ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) } ) |
| 29 |
1 3 2 2 28
|
cmpo |
⊢ ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) } ) ) |
| 30 |
0 29
|
wceq |
⊢ CnP = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) } ) ) |