Database BASIC TOPOLOGY Topology Separated spaces: T0, T1, T2 (Hausdorff) ... df-cnrm  
				
		 
		
			
		 
		Description:   Define completely normal spaces.  A space is completely normal if all
       its subspaces are normal.  (Contributed by Mario Carneiro , 26-Aug-2015) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-cnrm ⊢   CNrm  =  { 𝑗   ∈  Top  ∣  ∀ 𝑥   ∈  𝒫  ∪   𝑗  ( 𝑗   ↾t   𝑥  )  ∈  Nrm }  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							ccnrm ⊢  CNrm  
						
							1 
								
							 
							vj ⊢  𝑗   
						
							2 
								
							 
							ctop ⊢  Top  
						
							3 
								
							 
							vx ⊢  𝑥   
						
							4 
								1 
							 
							cv ⊢  𝑗   
						
							5 
								4 
							 
							cuni ⊢  ∪   𝑗   
						
							6 
								5 
							 
							cpw ⊢  𝒫  ∪   𝑗   
						
							7 
								
							 
							crest ⊢   ↾t    
						
							8 
								3 
							 
							cv ⊢  𝑥   
						
							9 
								4  8  7 
							 
							co ⊢  ( 𝑗   ↾t   𝑥  )  
						
							10 
								
							 
							cnrm ⊢  Nrm  
						
							11 
								9  10 
							 
							wcel ⊢  ( 𝑗   ↾t   𝑥  )  ∈  Nrm  
						
							12 
								11  3  6 
							 
							wral ⊢  ∀ 𝑥   ∈  𝒫  ∪   𝑗  ( 𝑗   ↾t   𝑥  )  ∈  Nrm  
						
							13 
								12  1  2 
							 
							crab ⊢  { 𝑗   ∈  Top  ∣  ∀ 𝑥   ∈  𝒫  ∪   𝑗  ( 𝑗   ↾t   𝑥  )  ∈  Nrm }  
						
							14 
								0  13 
							 
							wceq ⊢  CNrm  =  { 𝑗   ∈  Top  ∣  ∀ 𝑥   ∈  𝒫  ∪   𝑗  ( 𝑗   ↾t   𝑥  )  ∈  Nrm }