Metamath Proof Explorer


Definition df-cntr

Description: Define thecenter of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion df-cntr Cntr = ( 𝑚 ∈ V ↦ ( ( Cntz ‘ 𝑚 ) ‘ ( Base ‘ 𝑚 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccntr Cntr
1 vm 𝑚
2 cvv V
3 ccntz Cntz
4 1 cv 𝑚
5 4 3 cfv ( Cntz ‘ 𝑚 )
6 cbs Base
7 4 6 cfv ( Base ‘ 𝑚 )
8 7 5 cfv ( ( Cntz ‘ 𝑚 ) ‘ ( Base ‘ 𝑚 ) )
9 1 2 8 cmpt ( 𝑚 ∈ V ↦ ( ( Cntz ‘ 𝑚 ) ‘ ( Base ‘ 𝑚 ) ) )
10 0 9 wceq Cntr = ( 𝑚 ∈ V ↦ ( ( Cntz ‘ 𝑚 ) ‘ ( Base ‘ 𝑚 ) ) )