Metamath Proof Explorer


Definition df-cntz

Description: Define thecentralizer of a subset of a magma, which is the set of elements each of which commutes with each element of the given subset. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion df-cntz Cntz = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccntz Cntz
1 vm 𝑚
2 cvv V
3 vs 𝑠
4 cbs Base
5 1 cv 𝑚
6 5 4 cfv ( Base ‘ 𝑚 )
7 6 cpw 𝒫 ( Base ‘ 𝑚 )
8 vx 𝑥
9 vy 𝑦
10 3 cv 𝑠
11 8 cv 𝑥
12 cplusg +g
13 5 12 cfv ( +g𝑚 )
14 9 cv 𝑦
15 11 14 13 co ( 𝑥 ( +g𝑚 ) 𝑦 )
16 14 11 13 co ( 𝑦 ( +g𝑚 ) 𝑥 )
17 15 16 wceq ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 )
18 17 9 10 wral 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 )
19 18 8 6 crab { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) }
20 3 7 19 cmpt ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) } )
21 1 2 20 cmpt ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) } ) )
22 0 21 wceq Cntz = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦𝑠 ( 𝑥 ( +g𝑚 ) 𝑦 ) = ( 𝑦 ( +g𝑚 ) 𝑥 ) } ) )