| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccntz |
⊢ Cntz |
| 1 |
|
vm |
⊢ 𝑚 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑚 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑚 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑚 ) |
| 8 |
|
vx |
⊢ 𝑥 |
| 9 |
|
vy |
⊢ 𝑦 |
| 10 |
3
|
cv |
⊢ 𝑠 |
| 11 |
8
|
cv |
⊢ 𝑥 |
| 12 |
|
cplusg |
⊢ +g |
| 13 |
5 12
|
cfv |
⊢ ( +g ‘ 𝑚 ) |
| 14 |
9
|
cv |
⊢ 𝑦 |
| 15 |
11 14 13
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) |
| 16 |
14 11 13
|
co |
⊢ ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) |
| 17 |
15 16
|
wceq |
⊢ ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) |
| 18 |
17 9 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) |
| 19 |
18 8 6
|
crab |
⊢ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } |
| 20 |
3 7 19
|
cmpt |
⊢ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) |
| 21 |
1 2 20
|
cmpt |
⊢ ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) ) |
| 22 |
0 21
|
wceq |
⊢ Cntz = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) ) |