Description: Define the class of all converse reflexive sets, see the comment of df-ssr . It is used only by df-cnvrefrels . (Contributed by Peter Mazsa, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnvrefs | ⊢ CnvRefs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) ◡ S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccnvrefs | ⊢ CnvRefs | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cid | ⊢ I | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | 3 | cdm | ⊢ dom 𝑥 |
| 5 | 3 | crn | ⊢ ran 𝑥 |
| 6 | 4 5 | cxp | ⊢ ( dom 𝑥 × ran 𝑥 ) |
| 7 | 2 6 | cin | ⊢ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) |
| 8 | cssr | ⊢ S | |
| 9 | 8 | ccnv | ⊢ ◡ S |
| 10 | 3 6 | cin | ⊢ ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) |
| 11 | 7 10 9 | wbr | ⊢ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) ◡ S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) |
| 12 | 11 1 | cab | ⊢ { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) ◡ S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |
| 13 | 0 12 | wceq | ⊢ CnvRefs = { 𝑥 ∣ ( I ∩ ( dom 𝑥 × ran 𝑥 ) ) ◡ S ( 𝑥 ∩ ( dom 𝑥 × ran 𝑥 ) ) } |