Metamath Proof Explorer


Definition df-coe

Description: Define the coefficient function for a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion df-coe coeff = ( 𝑓 ∈ ( Poly ‘ ℂ ) ↦ ( 𝑎 ∈ ( ℂ ↑m0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccoe coeff
1 vf 𝑓
2 cply Poly
3 cc
4 3 2 cfv ( Poly ‘ ℂ )
5 va 𝑎
6 cmap m
7 cn0 0
8 3 7 6 co ( ℂ ↑m0 )
9 vn 𝑛
10 5 cv 𝑎
11 cuz
12 9 cv 𝑛
13 caddc +
14 c1 1
15 12 14 13 co ( 𝑛 + 1 )
16 15 11 cfv ( ℤ ‘ ( 𝑛 + 1 ) )
17 10 16 cima ( 𝑎 “ ( ℤ ‘ ( 𝑛 + 1 ) ) )
18 cc0 0
19 18 csn { 0 }
20 17 19 wceq ( 𝑎 “ ( ℤ ‘ ( 𝑛 + 1 ) ) ) = { 0 }
21 1 cv 𝑓
22 vz 𝑧
23 vk 𝑘
24 cfz ...
25 18 12 24 co ( 0 ... 𝑛 )
26 23 cv 𝑘
27 26 10 cfv ( 𝑎𝑘 )
28 cmul ·
29 22 cv 𝑧
30 cexp
31 29 26 30 co ( 𝑧𝑘 )
32 27 31 28 co ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) )
33 25 32 23 csu Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) )
34 22 3 33 cmpt ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) ) )
35 21 34 wceq 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) ) )
36 20 35 wa ( ( 𝑎 “ ( ℤ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) ) ) )
37 36 9 7 wrex 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) ) ) )
38 37 5 8 crio ( 𝑎 ∈ ( ℂ ↑m0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) ) ) ) )
39 1 4 38 cmpt ( 𝑓 ∈ ( Poly ‘ ℂ ) ↦ ( 𝑎 ∈ ( ℂ ↑m0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) ) ) ) ) )
40 0 39 wceq coeff = ( 𝑓 ∈ ( Poly ‘ ℂ ) ↦ ( 𝑎 ∈ ( ℂ ↑m0 ) ∃ 𝑛 ∈ ℕ0 ( ( 𝑎 “ ( ℤ ‘ ( 𝑛 + 1 ) ) ) = { 0 } ∧ 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎𝑘 ) · ( 𝑧𝑘 ) ) ) ) ) )