Step |
Hyp |
Ref |
Expression |
0 |
|
cconcat |
⊢ ++ |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cvv |
⊢ V |
3 |
|
vt |
⊢ 𝑡 |
4 |
|
vx |
⊢ 𝑥 |
5 |
|
cc0 |
⊢ 0 |
6 |
|
cfzo |
⊢ ..^ |
7 |
|
chash |
⊢ ♯ |
8 |
1
|
cv |
⊢ 𝑠 |
9 |
8 7
|
cfv |
⊢ ( ♯ ‘ 𝑠 ) |
10 |
|
caddc |
⊢ + |
11 |
3
|
cv |
⊢ 𝑡 |
12 |
11 7
|
cfv |
⊢ ( ♯ ‘ 𝑡 ) |
13 |
9 12 10
|
co |
⊢ ( ( ♯ ‘ 𝑠 ) + ( ♯ ‘ 𝑡 ) ) |
14 |
5 13 6
|
co |
⊢ ( 0 ..^ ( ( ♯ ‘ 𝑠 ) + ( ♯ ‘ 𝑡 ) ) ) |
15 |
4
|
cv |
⊢ 𝑥 |
16 |
5 9 6
|
co |
⊢ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) |
17 |
15 16
|
wcel |
⊢ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) |
18 |
15 8
|
cfv |
⊢ ( 𝑠 ‘ 𝑥 ) |
19 |
|
cmin |
⊢ − |
20 |
15 9 19
|
co |
⊢ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) |
21 |
20 11
|
cfv |
⊢ ( 𝑡 ‘ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) ) |
22 |
17 18 21
|
cif |
⊢ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) , ( 𝑠 ‘ 𝑥 ) , ( 𝑡 ‘ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) ) ) |
23 |
4 14 22
|
cmpt |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑠 ) + ( ♯ ‘ 𝑡 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) , ( 𝑠 ‘ 𝑥 ) , ( 𝑡 ‘ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) ) ) ) |
24 |
1 3 2 2 23
|
cmpo |
⊢ ( 𝑠 ∈ V , 𝑡 ∈ V ↦ ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑠 ) + ( ♯ ‘ 𝑡 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) , ( 𝑠 ‘ 𝑥 ) , ( 𝑡 ‘ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) ) ) ) ) |
25 |
0 24
|
wceq |
⊢ ++ = ( 𝑠 ∈ V , 𝑡 ∈ V ↦ ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑠 ) + ( ♯ ‘ 𝑡 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) , ( 𝑠 ‘ 𝑥 ) , ( 𝑡 ‘ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) ) ) ) ) |