Metamath Proof Explorer


Definition df-conn

Description: Topologies are connected when only (/) and U. j are both open and closed. (Contributed by FL, 17-Nov-2008)

Ref Expression
Assertion df-conn Conn = { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , 𝑗 } }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cconn Conn
1 vj 𝑗
2 ctop Top
3 1 cv 𝑗
4 ccld Clsd
5 3 4 cfv ( Clsd ‘ 𝑗 )
6 3 5 cin ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) )
7 c0
8 3 cuni 𝑗
9 7 8 cpr { ∅ , 𝑗 }
10 6 9 wceq ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , 𝑗 }
11 10 1 2 crab { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , 𝑗 } }
12 0 11 wceq Conn = { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , 𝑗 } }