Description: Topologies are connected when only (/) and U. j are both open and closed. (Contributed by FL, 17-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-conn | ⊢ Conn = { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cconn | ⊢ Conn | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | 1 | cv | ⊢ 𝑗 |
| 4 | ccld | ⊢ Clsd | |
| 5 | 3 4 | cfv | ⊢ ( Clsd ‘ 𝑗 ) |
| 6 | 3 5 | cin | ⊢ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) |
| 7 | c0 | ⊢ ∅ | |
| 8 | 3 | cuni | ⊢ ∪ 𝑗 |
| 9 | 7 8 | cpr | ⊢ { ∅ , ∪ 𝑗 } |
| 10 | 6 9 | wceq | ⊢ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } |
| 11 | 10 1 2 | crab | ⊢ { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } } |
| 12 | 0 11 | wceq | ⊢ Conn = { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } } |