Description: Topologies are connected when only (/) and U. j are both open and closed. (Contributed by FL, 17-Nov-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | df-conn | ⊢ Conn = { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cconn | ⊢ Conn | |
1 | vj | ⊢ 𝑗 | |
2 | ctop | ⊢ Top | |
3 | 1 | cv | ⊢ 𝑗 |
4 | ccld | ⊢ Clsd | |
5 | 3 4 | cfv | ⊢ ( Clsd ‘ 𝑗 ) |
6 | 3 5 | cin | ⊢ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) |
7 | c0 | ⊢ ∅ | |
8 | 3 | cuni | ⊢ ∪ 𝑗 |
9 | 7 8 | cpr | ⊢ { ∅ , ∪ 𝑗 } |
10 | 6 9 | wceq | ⊢ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } |
11 | 10 1 2 | crab | ⊢ { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } } |
12 | 0 11 | wceq | ⊢ Conn = { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } } |