| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccvr |
⊢ ⋖ |
| 1 |
|
vp |
⊢ 𝑝 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
va |
⊢ 𝑎 |
| 4 |
|
vb |
⊢ 𝑏 |
| 5 |
3
|
cv |
⊢ 𝑎 |
| 6 |
|
cbs |
⊢ Base |
| 7 |
1
|
cv |
⊢ 𝑝 |
| 8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑝 ) |
| 9 |
5 8
|
wcel |
⊢ 𝑎 ∈ ( Base ‘ 𝑝 ) |
| 10 |
4
|
cv |
⊢ 𝑏 |
| 11 |
10 8
|
wcel |
⊢ 𝑏 ∈ ( Base ‘ 𝑝 ) |
| 12 |
9 11
|
wa |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) |
| 13 |
|
cplt |
⊢ lt |
| 14 |
7 13
|
cfv |
⊢ ( lt ‘ 𝑝 ) |
| 15 |
5 10 14
|
wbr |
⊢ 𝑎 ( lt ‘ 𝑝 ) 𝑏 |
| 16 |
|
vz |
⊢ 𝑧 |
| 17 |
16
|
cv |
⊢ 𝑧 |
| 18 |
5 17 14
|
wbr |
⊢ 𝑎 ( lt ‘ 𝑝 ) 𝑧 |
| 19 |
17 10 14
|
wbr |
⊢ 𝑧 ( lt ‘ 𝑝 ) 𝑏 |
| 20 |
18 19
|
wa |
⊢ ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) |
| 21 |
20 16 8
|
wrex |
⊢ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) |
| 22 |
21
|
wn |
⊢ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) |
| 23 |
12 15 22
|
w3a |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) |
| 24 |
23 3 4
|
copab |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } |
| 25 |
1 2 24
|
cmpt |
⊢ ( 𝑝 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } ) |
| 26 |
0 25
|
wceq |
⊢ ⋖ = ( 𝑝 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } ) |