Step |
Hyp |
Ref |
Expression |
0 |
|
ccvr |
⊢ ⋖ |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
cvv |
⊢ V |
3 |
|
va |
⊢ 𝑎 |
4 |
|
vb |
⊢ 𝑏 |
5 |
3
|
cv |
⊢ 𝑎 |
6 |
|
cbs |
⊢ Base |
7 |
1
|
cv |
⊢ 𝑝 |
8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑝 ) |
9 |
5 8
|
wcel |
⊢ 𝑎 ∈ ( Base ‘ 𝑝 ) |
10 |
4
|
cv |
⊢ 𝑏 |
11 |
10 8
|
wcel |
⊢ 𝑏 ∈ ( Base ‘ 𝑝 ) |
12 |
9 11
|
wa |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) |
13 |
|
cplt |
⊢ lt |
14 |
7 13
|
cfv |
⊢ ( lt ‘ 𝑝 ) |
15 |
5 10 14
|
wbr |
⊢ 𝑎 ( lt ‘ 𝑝 ) 𝑏 |
16 |
|
vz |
⊢ 𝑧 |
17 |
16
|
cv |
⊢ 𝑧 |
18 |
5 17 14
|
wbr |
⊢ 𝑎 ( lt ‘ 𝑝 ) 𝑧 |
19 |
17 10 14
|
wbr |
⊢ 𝑧 ( lt ‘ 𝑝 ) 𝑏 |
20 |
18 19
|
wa |
⊢ ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) |
21 |
20 16 8
|
wrex |
⊢ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) |
22 |
21
|
wn |
⊢ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) |
23 |
12 15 22
|
w3a |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) |
24 |
23 3 4
|
copab |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } |
25 |
1 2 24
|
cmpt |
⊢ ( 𝑝 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } ) |
26 |
0 25
|
wceq |
⊢ ⋖ = ( 𝑝 ∈ V ↦ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( Base ‘ 𝑝 ) ∧ 𝑏 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑎 ( lt ‘ 𝑝 ) 𝑏 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑎 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑏 ) ) } ) |