Metamath Proof Explorer


Definition df-cph

Description: Define the class of subcomplex pre-Hilbert spaces. By restricting the scalar field to a subfield of CCfld closed under square roots of nonnegative reals, we have enough structure to define a norm, with the associated connection to a metric and topology. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Assertion df-cph ℂPreHil = { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂflds 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑤 ) 𝑥 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccph ℂPreHil
1 vw 𝑤
2 cphl PreHil
3 cnlm NrmMod
4 2 3 cin ( PreHil ∩ NrmMod )
5 csca Scalar
6 1 cv 𝑤
7 6 5 cfv ( Scalar ‘ 𝑤 )
8 vf 𝑓
9 cbs Base
10 8 cv 𝑓
11 10 9 cfv ( Base ‘ 𝑓 )
12 vk 𝑘
13 ccnfld fld
14 cress s
15 12 cv 𝑘
16 13 15 14 co ( ℂflds 𝑘 )
17 10 16 wceq 𝑓 = ( ℂflds 𝑘 )
18 csqrt
19 cc0 0
20 cico [,)
21 cpnf +∞
22 19 21 20 co ( 0 [,) +∞ )
23 15 22 cin ( 𝑘 ∩ ( 0 [,) +∞ ) )
24 18 23 cima ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) )
25 24 15 wss ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘
26 cnm norm
27 6 26 cfv ( norm ‘ 𝑤 )
28 vx 𝑥
29 6 9 cfv ( Base ‘ 𝑤 )
30 28 cv 𝑥
31 cip ·𝑖
32 6 31 cfv ( ·𝑖𝑤 )
33 30 30 32 co ( 𝑥 ( ·𝑖𝑤 ) 𝑥 )
34 33 18 cfv ( √ ‘ ( 𝑥 ( ·𝑖𝑤 ) 𝑥 ) )
35 28 29 34 cmpt ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑤 ) 𝑥 ) ) )
36 27 35 wceq ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑤 ) 𝑥 ) ) )
37 17 25 36 w3a ( 𝑓 = ( ℂflds 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑤 ) 𝑥 ) ) ) )
38 37 12 11 wsbc [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂflds 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑤 ) 𝑥 ) ) ) )
39 38 8 7 wsbc [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂflds 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑤 ) 𝑥 ) ) ) )
40 39 1 4 crab { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂflds 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑤 ) 𝑥 ) ) ) ) }
41 0 40 wceq ℂPreHil = { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂflds 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑤 ) 𝑥 ) ) ) ) }