Step |
Hyp |
Ref |
Expression |
0 |
|
ccph |
⊢ ℂPreHil |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cphl |
⊢ PreHil |
3 |
|
cnlm |
⊢ NrmMod |
4 |
2 3
|
cin |
⊢ ( PreHil ∩ NrmMod ) |
5 |
|
csca |
⊢ Scalar |
6 |
1
|
cv |
⊢ 𝑤 |
7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
8 |
|
vf |
⊢ 𝑓 |
9 |
|
cbs |
⊢ Base |
10 |
8
|
cv |
⊢ 𝑓 |
11 |
10 9
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
12 |
|
vk |
⊢ 𝑘 |
13 |
|
ccnfld |
⊢ ℂfld |
14 |
|
cress |
⊢ ↾s |
15 |
12
|
cv |
⊢ 𝑘 |
16 |
13 15 14
|
co |
⊢ ( ℂfld ↾s 𝑘 ) |
17 |
10 16
|
wceq |
⊢ 𝑓 = ( ℂfld ↾s 𝑘 ) |
18 |
|
csqrt |
⊢ √ |
19 |
|
cc0 |
⊢ 0 |
20 |
|
cico |
⊢ [,) |
21 |
|
cpnf |
⊢ +∞ |
22 |
19 21 20
|
co |
⊢ ( 0 [,) +∞ ) |
23 |
15 22
|
cin |
⊢ ( 𝑘 ∩ ( 0 [,) +∞ ) ) |
24 |
18 23
|
cima |
⊢ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) |
25 |
24 15
|
wss |
⊢ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 |
26 |
|
cnm |
⊢ norm |
27 |
6 26
|
cfv |
⊢ ( norm ‘ 𝑤 ) |
28 |
|
vx |
⊢ 𝑥 |
29 |
6 9
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
30 |
28
|
cv |
⊢ 𝑥 |
31 |
|
cip |
⊢ ·𝑖 |
32 |
6 31
|
cfv |
⊢ ( ·𝑖 ‘ 𝑤 ) |
33 |
30 30 32
|
co |
⊢ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) |
34 |
33 18
|
cfv |
⊢ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) |
35 |
28 29 34
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) |
36 |
27 35
|
wceq |
⊢ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) |
37 |
17 25 36
|
w3a |
⊢ ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
38 |
37 12 11
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
39 |
38 8 7
|
wsbc |
⊢ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
40 |
39 1 4
|
crab |
⊢ { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } |
41 |
0 40
|
wceq |
⊢ ℂPreHil = { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } |