| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccph |
⊢ ℂPreHil |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cphl |
⊢ PreHil |
| 3 |
|
cnlm |
⊢ NrmMod |
| 4 |
2 3
|
cin |
⊢ ( PreHil ∩ NrmMod ) |
| 5 |
|
csca |
⊢ Scalar |
| 6 |
1
|
cv |
⊢ 𝑤 |
| 7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
| 8 |
|
vf |
⊢ 𝑓 |
| 9 |
|
cbs |
⊢ Base |
| 10 |
8
|
cv |
⊢ 𝑓 |
| 11 |
10 9
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 12 |
|
vk |
⊢ 𝑘 |
| 13 |
|
ccnfld |
⊢ ℂfld |
| 14 |
|
cress |
⊢ ↾s |
| 15 |
12
|
cv |
⊢ 𝑘 |
| 16 |
13 15 14
|
co |
⊢ ( ℂfld ↾s 𝑘 ) |
| 17 |
10 16
|
wceq |
⊢ 𝑓 = ( ℂfld ↾s 𝑘 ) |
| 18 |
|
csqrt |
⊢ √ |
| 19 |
|
cc0 |
⊢ 0 |
| 20 |
|
cico |
⊢ [,) |
| 21 |
|
cpnf |
⊢ +∞ |
| 22 |
19 21 20
|
co |
⊢ ( 0 [,) +∞ ) |
| 23 |
15 22
|
cin |
⊢ ( 𝑘 ∩ ( 0 [,) +∞ ) ) |
| 24 |
18 23
|
cima |
⊢ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) |
| 25 |
24 15
|
wss |
⊢ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 |
| 26 |
|
cnm |
⊢ norm |
| 27 |
6 26
|
cfv |
⊢ ( norm ‘ 𝑤 ) |
| 28 |
|
vx |
⊢ 𝑥 |
| 29 |
6 9
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 30 |
28
|
cv |
⊢ 𝑥 |
| 31 |
|
cip |
⊢ ·𝑖 |
| 32 |
6 31
|
cfv |
⊢ ( ·𝑖 ‘ 𝑤 ) |
| 33 |
30 30 32
|
co |
⊢ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) |
| 34 |
33 18
|
cfv |
⊢ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) |
| 35 |
28 29 34
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) |
| 36 |
27 35
|
wceq |
⊢ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) |
| 37 |
17 25 36
|
w3a |
⊢ ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
| 38 |
37 12 11
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
| 39 |
38 8 7
|
wsbc |
⊢ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
| 40 |
39 1 4
|
crab |
⊢ { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } |
| 41 |
0 40
|
wceq |
⊢ ℂPreHil = { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } |