Metamath Proof Explorer


Definition df-cpmat2mat

Description: Transformation of a constant polynomial matrix (over a ring) into a matrix over the corresponding ring. Since this function is the inverse function of matToPolyMat , see m2cpminv , it is also called "inverse matrix transformation" in the following. (Contributed by AV, 14-Dec-2019)

Ref Expression
Assertion df-cpmat2mat cPolyMatToMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( 𝑛 ConstPolyMat 𝑟 ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccpmat2mat cPolyMatToMat
1 vn 𝑛
2 cfn Fin
3 vr 𝑟
4 cvv V
5 vm 𝑚
6 1 cv 𝑛
7 ccpmat ConstPolyMat
8 3 cv 𝑟
9 6 8 7 co ( 𝑛 ConstPolyMat 𝑟 )
10 vx 𝑥
11 vy 𝑦
12 cco1 coe1
13 10 cv 𝑥
14 5 cv 𝑚
15 11 cv 𝑦
16 13 15 14 co ( 𝑥 𝑚 𝑦 )
17 16 12 cfv ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) )
18 cc0 0
19 18 17 cfv ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 )
20 10 11 6 6 19 cmpo ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) )
21 5 9 20 cmpt ( 𝑚 ∈ ( 𝑛 ConstPolyMat 𝑟 ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) )
22 1 3 2 4 21 cmpo ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( 𝑛 ConstPolyMat 𝑟 ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) )
23 0 22 wceq cPolyMatToMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( 𝑛 ConstPolyMat 𝑟 ) ↦ ( 𝑥𝑛 , 𝑦𝑛 ↦ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) )