| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccpmat2mat |
⊢ cPolyMatToMat |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cfn |
⊢ Fin |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
cvv |
⊢ V |
| 5 |
|
vm |
⊢ 𝑚 |
| 6 |
1
|
cv |
⊢ 𝑛 |
| 7 |
|
ccpmat |
⊢ ConstPolyMat |
| 8 |
3
|
cv |
⊢ 𝑟 |
| 9 |
6 8 7
|
co |
⊢ ( 𝑛 ConstPolyMat 𝑟 ) |
| 10 |
|
vx |
⊢ 𝑥 |
| 11 |
|
vy |
⊢ 𝑦 |
| 12 |
|
cco1 |
⊢ coe1 |
| 13 |
10
|
cv |
⊢ 𝑥 |
| 14 |
5
|
cv |
⊢ 𝑚 |
| 15 |
11
|
cv |
⊢ 𝑦 |
| 16 |
13 15 14
|
co |
⊢ ( 𝑥 𝑚 𝑦 ) |
| 17 |
16 12
|
cfv |
⊢ ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) |
| 18 |
|
cc0 |
⊢ 0 |
| 19 |
18 17
|
cfv |
⊢ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) |
| 20 |
10 11 6 6 19
|
cmpo |
⊢ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) |
| 21 |
5 9 20
|
cmpt |
⊢ ( 𝑚 ∈ ( 𝑛 ConstPolyMat 𝑟 ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) |
| 22 |
1 3 2 4 21
|
cmpo |
⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( 𝑛 ConstPolyMat 𝑟 ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) ) |
| 23 |
0 22
|
wceq |
⊢ cPolyMatToMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( 𝑛 ConstPolyMat 𝑟 ) ↦ ( 𝑥 ∈ 𝑛 , 𝑦 ∈ 𝑛 ↦ ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) ) |