Step |
Hyp |
Ref |
Expression |
0 |
|
ccpn |
⊢ 𝓑C𝑛 |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cc |
⊢ ℂ |
3 |
2
|
cpw |
⊢ 𝒫 ℂ |
4 |
|
vx |
⊢ 𝑥 |
5 |
|
cn0 |
⊢ ℕ0 |
6 |
|
vf |
⊢ 𝑓 |
7 |
|
cpm |
⊢ ↑pm |
8 |
1
|
cv |
⊢ 𝑠 |
9 |
2 8 7
|
co |
⊢ ( ℂ ↑pm 𝑠 ) |
10 |
|
cdvn |
⊢ D𝑛 |
11 |
6
|
cv |
⊢ 𝑓 |
12 |
8 11 10
|
co |
⊢ ( 𝑠 D𝑛 𝑓 ) |
13 |
4
|
cv |
⊢ 𝑥 |
14 |
13 12
|
cfv |
⊢ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) |
15 |
11
|
cdm |
⊢ dom 𝑓 |
16 |
|
ccncf |
⊢ –cn→ |
17 |
15 2 16
|
co |
⊢ ( dom 𝑓 –cn→ ℂ ) |
18 |
14 17
|
wcel |
⊢ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) |
19 |
18 6 9
|
crab |
⊢ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } |
20 |
4 5 19
|
cmpt |
⊢ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
21 |
1 3 20
|
cmpt |
⊢ ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
22 |
0 21
|
wceq |
⊢ 𝓑C𝑛 = ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |