Metamath Proof Explorer


Definition df-cpn

Description: Define the set of n -times continuously differentiable functions. (Contributed by Stefan O'Rear, 15-Nov-2014)

Ref Expression
Assertion df-cpn 𝓑C𝑛 = ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓cn→ ℂ ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccpn 𝓑C𝑛
1 vs 𝑠
2 cc
3 2 cpw 𝒫 ℂ
4 vx 𝑥
5 cn0 0
6 vf 𝑓
7 cpm pm
8 1 cv 𝑠
9 2 8 7 co ( ℂ ↑pm 𝑠 )
10 cdvn D𝑛
11 6 cv 𝑓
12 8 11 10 co ( 𝑠 D𝑛 𝑓 )
13 4 cv 𝑥
14 13 12 cfv ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 )
15 11 cdm dom 𝑓
16 ccncf cn
17 15 2 16 co ( dom 𝑓cn→ ℂ )
18 14 17 wcel ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓cn→ ℂ )
19 18 6 9 crab { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓cn→ ℂ ) }
20 4 5 19 cmpt ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓cn→ ℂ ) } )
21 1 3 20 cmpt ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓cn→ ℂ ) } ) )
22 0 21 wceq 𝓑C𝑛 = ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓cn→ ℂ ) } ) )