| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccpn |
⊢ 𝓑C𝑛 |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
2
|
cpw |
⊢ 𝒫 ℂ |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
|
cn0 |
⊢ ℕ0 |
| 6 |
|
vf |
⊢ 𝑓 |
| 7 |
|
cpm |
⊢ ↑pm |
| 8 |
1
|
cv |
⊢ 𝑠 |
| 9 |
2 8 7
|
co |
⊢ ( ℂ ↑pm 𝑠 ) |
| 10 |
|
cdvn |
⊢ D𝑛 |
| 11 |
6
|
cv |
⊢ 𝑓 |
| 12 |
8 11 10
|
co |
⊢ ( 𝑠 D𝑛 𝑓 ) |
| 13 |
4
|
cv |
⊢ 𝑥 |
| 14 |
13 12
|
cfv |
⊢ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) |
| 15 |
11
|
cdm |
⊢ dom 𝑓 |
| 16 |
|
ccncf |
⊢ –cn→ |
| 17 |
15 2 16
|
co |
⊢ ( dom 𝑓 –cn→ ℂ ) |
| 18 |
14 17
|
wcel |
⊢ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) |
| 19 |
18 6 9
|
crab |
⊢ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } |
| 20 |
4 5 19
|
cmpt |
⊢ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
| 21 |
1 3 20
|
cmpt |
⊢ ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
| 22 |
0 21
|
wceq |
⊢ 𝓑C𝑛 = ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |