Metamath Proof Explorer
Description: Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015)
|
|
Ref |
Expression |
|
Assertion |
df-cring |
⊢ CRing = { 𝑓 ∈ Ring ∣ ( mulGrp ‘ 𝑓 ) ∈ CMnd } |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccrg |
⊢ CRing |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
crg |
⊢ Ring |
| 3 |
|
cmgp |
⊢ mulGrp |
| 4 |
1
|
cv |
⊢ 𝑓 |
| 5 |
4 3
|
cfv |
⊢ ( mulGrp ‘ 𝑓 ) |
| 6 |
|
ccmn |
⊢ CMnd |
| 7 |
5 6
|
wcel |
⊢ ( mulGrp ‘ 𝑓 ) ∈ CMnd |
| 8 |
7 1 2
|
crab |
⊢ { 𝑓 ∈ Ring ∣ ( mulGrp ‘ 𝑓 ) ∈ CMnd } |
| 9 |
0 8
|
wceq |
⊢ CRing = { 𝑓 ∈ Ring ∣ ( mulGrp ‘ 𝑓 ) ∈ CMnd } |