Metamath Proof Explorer


Definition df-cring

Description: Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion df-cring CRing = { 𝑓 ∈ Ring ∣ ( mulGrp ‘ 𝑓 ) ∈ CMnd }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccrg CRing
1 vf 𝑓
2 crg Ring
3 cmgp mulGrp
4 1 cv 𝑓
5 4 3 cfv ( mulGrp ‘ 𝑓 )
6 ccmn CMnd
7 5 6 wcel ( mulGrp ‘ 𝑓 ) ∈ CMnd
8 7 1 2 crab { 𝑓 ∈ Ring ∣ ( mulGrp ‘ 𝑓 ) ∈ CMnd }
9 0 8 wceq CRing = { 𝑓 ∈ Ring ∣ ( mulGrp ‘ 𝑓 ) ∈ CMnd }