Metamath Proof Explorer


Definition df-css

Description: Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011)

Ref Expression
Assertion df-css ClSubSp = ( ∈ V ↦ { 𝑠𝑠 = ( ( ocv ‘ ) ‘ ( ( ocv ‘ ) ‘ 𝑠 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccss ClSubSp
1 vh
2 cvv V
3 vs 𝑠
4 3 cv 𝑠
5 cocv ocv
6 1 cv
7 6 5 cfv ( ocv ‘ )
8 4 7 cfv ( ( ocv ‘ ) ‘ 𝑠 )
9 8 7 cfv ( ( ocv ‘ ) ‘ ( ( ocv ‘ ) ‘ 𝑠 ) )
10 4 9 wceq 𝑠 = ( ( ocv ‘ ) ‘ ( ( ocv ‘ ) ‘ 𝑠 ) )
11 10 3 cab { 𝑠𝑠 = ( ( ocv ‘ ) ‘ ( ( ocv ‘ ) ‘ 𝑠 ) ) }
12 1 2 11 cmpt ( ∈ V ↦ { 𝑠𝑠 = ( ( ocv ‘ ) ‘ ( ( ocv ‘ ) ‘ 𝑠 ) ) } )
13 0 12 wceq ClSubSp = ( ∈ V ↦ { 𝑠𝑠 = ( ( ocv ‘ ) ‘ ( ( ocv ‘ ) ‘ 𝑠 ) ) } )