Description: Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-css | ⊢ ClSubSp = ( ℎ ∈ V ↦ { 𝑠 ∣ 𝑠 = ( ( ocv ‘ ℎ ) ‘ ( ( ocv ‘ ℎ ) ‘ 𝑠 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccss | ⊢ ClSubSp | |
| 1 | vh | ⊢ ℎ | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | 3 | cv | ⊢ 𝑠 |
| 5 | cocv | ⊢ ocv | |
| 6 | 1 | cv | ⊢ ℎ |
| 7 | 6 5 | cfv | ⊢ ( ocv ‘ ℎ ) |
| 8 | 4 7 | cfv | ⊢ ( ( ocv ‘ ℎ ) ‘ 𝑠 ) |
| 9 | 8 7 | cfv | ⊢ ( ( ocv ‘ ℎ ) ‘ ( ( ocv ‘ ℎ ) ‘ 𝑠 ) ) |
| 10 | 4 9 | wceq | ⊢ 𝑠 = ( ( ocv ‘ ℎ ) ‘ ( ( ocv ‘ ℎ ) ‘ 𝑠 ) ) |
| 11 | 10 3 | cab | ⊢ { 𝑠 ∣ 𝑠 = ( ( ocv ‘ ℎ ) ‘ ( ( ocv ‘ ℎ ) ‘ 𝑠 ) ) } |
| 12 | 1 2 11 | cmpt | ⊢ ( ℎ ∈ V ↦ { 𝑠 ∣ 𝑠 = ( ( ocv ‘ ℎ ) ‘ ( ( ocv ‘ ℎ ) ‘ 𝑠 ) ) } ) |
| 13 | 0 12 | wceq | ⊢ ClSubSp = ( ℎ ∈ V ↦ { 𝑠 ∣ 𝑠 = ( ( ocv ‘ ℎ ) ‘ ( ( ocv ‘ ℎ ) ‘ 𝑠 ) ) } ) |