Metamath Proof Explorer


Definition df-cur

Description: Define the currying of F , which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Assertion df-cur curry 𝐹 = ( 𝑥 ∈ dom dom 𝐹 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF 𝐹
1 0 ccur curry 𝐹
2 vx 𝑥
3 0 cdm dom 𝐹
4 3 cdm dom dom 𝐹
5 vy 𝑦
6 vz 𝑧
7 2 cv 𝑥
8 5 cv 𝑦
9 7 8 cop 𝑥 , 𝑦
10 6 cv 𝑧
11 9 10 0 wbr 𝑥 , 𝑦𝐹 𝑧
12 11 5 6 copab { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 }
13 2 4 12 cmpt ( 𝑥 ∈ dom dom 𝐹 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } )
14 1 13 wceq curry 𝐹 = ( 𝑥 ∈ dom dom 𝐹 ↦ { ⟨ 𝑦 , 𝑧 ⟩ ∣ ⟨ 𝑥 , 𝑦𝐹 𝑧 } )