Step |
Hyp |
Ref |
Expression |
0 |
|
clc |
⊢ CvLat |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cal |
⊢ AtLat |
3 |
|
va |
⊢ 𝑎 |
4 |
|
catm |
⊢ Atoms |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
7 |
|
vb |
⊢ 𝑏 |
8 |
|
vc |
⊢ 𝑐 |
9 |
|
cbs |
⊢ Base |
10 |
5 9
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
11 |
3
|
cv |
⊢ 𝑎 |
12 |
|
cple |
⊢ le |
13 |
5 12
|
cfv |
⊢ ( le ‘ 𝑘 ) |
14 |
8
|
cv |
⊢ 𝑐 |
15 |
11 14 13
|
wbr |
⊢ 𝑎 ( le ‘ 𝑘 ) 𝑐 |
16 |
15
|
wn |
⊢ ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 |
17 |
|
cjn |
⊢ join |
18 |
5 17
|
cfv |
⊢ ( join ‘ 𝑘 ) |
19 |
7
|
cv |
⊢ 𝑏 |
20 |
14 19 18
|
co |
⊢ ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) |
21 |
11 20 13
|
wbr |
⊢ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) |
22 |
16 21
|
wa |
⊢ ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) |
23 |
14 11 18
|
co |
⊢ ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) |
24 |
19 23 13
|
wbr |
⊢ 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) |
25 |
22 24
|
wi |
⊢ ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) |
26 |
25 8 10
|
wral |
⊢ ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) |
27 |
26 7 6
|
wral |
⊢ ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) |
28 |
27 3 6
|
wral |
⊢ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) |
29 |
28 1 2
|
crab |
⊢ { 𝑘 ∈ AtLat ∣ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) } |
30 |
0 29
|
wceq |
⊢ CvLat = { 𝑘 ∈ AtLat ∣ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐 ∧ 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) } |