Metamath Proof Explorer


Definition df-cvlat

Description: Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion df-cvlat CvLat = { 𝑘 ∈ AtLat ∣ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clc CvLat
1 vk 𝑘
2 cal AtLat
3 va 𝑎
4 catm Atoms
5 1 cv 𝑘
6 5 4 cfv ( Atoms ‘ 𝑘 )
7 vb 𝑏
8 vc 𝑐
9 cbs Base
10 5 9 cfv ( Base ‘ 𝑘 )
11 3 cv 𝑎
12 cple le
13 5 12 cfv ( le ‘ 𝑘 )
14 8 cv 𝑐
15 11 14 13 wbr 𝑎 ( le ‘ 𝑘 ) 𝑐
16 15 wn ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐
17 cjn join
18 5 17 cfv ( join ‘ 𝑘 )
19 7 cv 𝑏
20 14 19 18 co ( 𝑐 ( join ‘ 𝑘 ) 𝑏 )
21 11 20 13 wbr 𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 )
22 16 21 wa ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) )
23 14 11 18 co ( 𝑐 ( join ‘ 𝑘 ) 𝑎 )
24 19 23 13 wbr 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 )
25 22 24 wi ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) )
26 25 8 10 wral 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) )
27 26 7 6 wral 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) )
28 27 3 6 wral 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) )
29 28 1 2 crab { 𝑘 ∈ AtLat ∣ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) }
30 0 29 wceq CvLat = { 𝑘 ∈ AtLat ∣ ∀ 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑏 ∈ ( Atoms ‘ 𝑘 ) ∀ 𝑐 ∈ ( Base ‘ 𝑘 ) ( ( ¬ 𝑎 ( le ‘ 𝑘 ) 𝑐𝑎 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑏 ) ) → 𝑏 ( le ‘ 𝑘 ) ( 𝑐 ( join ‘ 𝑘 ) 𝑎 ) ) }