| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccxp |
⊢ ↑𝑐 |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
1
|
cv |
⊢ 𝑥 |
| 5 |
|
cc0 |
⊢ 0 |
| 6 |
4 5
|
wceq |
⊢ 𝑥 = 0 |
| 7 |
3
|
cv |
⊢ 𝑦 |
| 8 |
7 5
|
wceq |
⊢ 𝑦 = 0 |
| 9 |
|
c1 |
⊢ 1 |
| 10 |
8 9 5
|
cif |
⊢ if ( 𝑦 = 0 , 1 , 0 ) |
| 11 |
|
ce |
⊢ exp |
| 12 |
|
cmul |
⊢ · |
| 13 |
|
clog |
⊢ log |
| 14 |
4 13
|
cfv |
⊢ ( log ‘ 𝑥 ) |
| 15 |
7 14 12
|
co |
⊢ ( 𝑦 · ( log ‘ 𝑥 ) ) |
| 16 |
15 11
|
cfv |
⊢ ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) |
| 17 |
6 10 16
|
cif |
⊢ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) |
| 18 |
1 3 2 2 17
|
cmpo |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ) |
| 19 |
0 18
|
wceq |
⊢ ↑𝑐 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ) |