Step |
Hyp |
Ref |
Expression |
0 |
|
ccxp |
⊢ ↑𝑐 |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cc |
⊢ ℂ |
3 |
|
vy |
⊢ 𝑦 |
4 |
1
|
cv |
⊢ 𝑥 |
5 |
|
cc0 |
⊢ 0 |
6 |
4 5
|
wceq |
⊢ 𝑥 = 0 |
7 |
3
|
cv |
⊢ 𝑦 |
8 |
7 5
|
wceq |
⊢ 𝑦 = 0 |
9 |
|
c1 |
⊢ 1 |
10 |
8 9 5
|
cif |
⊢ if ( 𝑦 = 0 , 1 , 0 ) |
11 |
|
ce |
⊢ exp |
12 |
|
cmul |
⊢ · |
13 |
|
clog |
⊢ log |
14 |
4 13
|
cfv |
⊢ ( log ‘ 𝑥 ) |
15 |
7 14 12
|
co |
⊢ ( 𝑦 · ( log ‘ 𝑥 ) ) |
16 |
15 11
|
cfv |
⊢ ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) |
17 |
6 10 16
|
cif |
⊢ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) |
18 |
1 3 2 2 17
|
cmpo |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ) |
19 |
0 18
|
wceq |
⊢ ↑𝑐 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ) |