Metamath Proof Explorer


Definition df-cxp

Description: Define the power function on complex numbers. Note that the value of this function when x = 0 and ( Rey ) <_ 0 , y =/= 0 should properly be undefined, but defining it by convention this way simplifies the domain. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion df-cxp 𝑐 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccxp 𝑐
1 vx 𝑥
2 cc
3 vy 𝑦
4 1 cv 𝑥
5 cc0 0
6 4 5 wceq 𝑥 = 0
7 3 cv 𝑦
8 7 5 wceq 𝑦 = 0
9 c1 1
10 8 9 5 cif if ( 𝑦 = 0 , 1 , 0 )
11 ce exp
12 cmul ·
13 clog log
14 4 13 cfv ( log ‘ 𝑥 )
15 7 14 12 co ( 𝑦 · ( log ‘ 𝑥 ) )
16 15 11 cfv ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) )
17 6 10 16 cif if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) )
18 1 3 2 2 17 cmpo ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) )
19 0 18 wceq 𝑐 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) )