Step |
Hyp |
Ref |
Expression |
0 |
|
cdchr |
⊢ DChr |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cn |
⊢ ℕ |
3 |
|
czn |
⊢ ℤ/nℤ |
4 |
1
|
cv |
⊢ 𝑛 |
5 |
4 3
|
cfv |
⊢ ( ℤ/nℤ ‘ 𝑛 ) |
6 |
|
vz |
⊢ 𝑧 |
7 |
|
vx |
⊢ 𝑥 |
8 |
|
cmgp |
⊢ mulGrp |
9 |
6
|
cv |
⊢ 𝑧 |
10 |
9 8
|
cfv |
⊢ ( mulGrp ‘ 𝑧 ) |
11 |
|
cmhm |
⊢ MndHom |
12 |
|
ccnfld |
⊢ ℂfld |
13 |
12 8
|
cfv |
⊢ ( mulGrp ‘ ℂfld ) |
14 |
10 13 11
|
co |
⊢ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) |
15 |
|
cbs |
⊢ Base |
16 |
9 15
|
cfv |
⊢ ( Base ‘ 𝑧 ) |
17 |
|
cui |
⊢ Unit |
18 |
9 17
|
cfv |
⊢ ( Unit ‘ 𝑧 ) |
19 |
16 18
|
cdif |
⊢ ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) |
20 |
|
cc0 |
⊢ 0 |
21 |
20
|
csn |
⊢ { 0 } |
22 |
19 21
|
cxp |
⊢ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) |
23 |
7
|
cv |
⊢ 𝑥 |
24 |
22 23
|
wss |
⊢ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 |
25 |
24 7 14
|
crab |
⊢ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } |
26 |
|
vb |
⊢ 𝑏 |
27 |
|
cnx |
⊢ ndx |
28 |
27 15
|
cfv |
⊢ ( Base ‘ ndx ) |
29 |
26
|
cv |
⊢ 𝑏 |
30 |
28 29
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
31 |
|
cplusg |
⊢ +g |
32 |
27 31
|
cfv |
⊢ ( +g ‘ ndx ) |
33 |
|
cmul |
⊢ · |
34 |
33
|
cof |
⊢ ∘f · |
35 |
29 29
|
cxp |
⊢ ( 𝑏 × 𝑏 ) |
36 |
34 35
|
cres |
⊢ ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) |
37 |
32 36
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 |
38 |
30 37
|
cpr |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } |
39 |
26 25 38
|
csb |
⊢ ⦋ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } |
40 |
6 5 39
|
csb |
⊢ ⦋ ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 ⦌ ⦋ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } |
41 |
1 2 40
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 ⦌ ⦋ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } ) |
42 |
0 41
|
wceq |
⊢ DChr = ( 𝑛 ∈ ℕ ↦ ⦋ ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 ⦌ ⦋ { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) 〉 } ) |