Metamath Proof Explorer


Definition df-dchr

Description: The group of Dirichlet characters mod n is the set of monoid homomorphisms from ZZ / n ZZ to the multiplicative monoid of the complex numbers, equipped with the group operation of pointwise multiplication. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Assertion df-dchr DChr = ( 𝑛 ∈ ℕ ↦ ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) ⟩ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdchr DChr
1 vn 𝑛
2 cn
3 czn ℤ/n
4 1 cv 𝑛
5 4 3 cfv ( ℤ/nℤ ‘ 𝑛 )
6 vz 𝑧
7 vx 𝑥
8 cmgp mulGrp
9 6 cv 𝑧
10 9 8 cfv ( mulGrp ‘ 𝑧 )
11 cmhm MndHom
12 ccnfld fld
13 12 8 cfv ( mulGrp ‘ ℂfld )
14 10 13 11 co ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) )
15 cbs Base
16 9 15 cfv ( Base ‘ 𝑧 )
17 cui Unit
18 9 17 cfv ( Unit ‘ 𝑧 )
19 16 18 cdif ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) )
20 cc0 0
21 20 csn { 0 }
22 19 21 cxp ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } )
23 7 cv 𝑥
24 22 23 wss ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥
25 24 7 14 crab { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 }
26 vb 𝑏
27 cnx ndx
28 27 15 cfv ( Base ‘ ndx )
29 26 cv 𝑏
30 28 29 cop ⟨ ( Base ‘ ndx ) , 𝑏
31 cplusg +g
32 27 31 cfv ( +g ‘ ndx )
33 cmul ·
34 33 cof f ·
35 29 29 cxp ( 𝑏 × 𝑏 )
36 34 35 cres ( ∘f · ↾ ( 𝑏 × 𝑏 ) )
37 32 36 cop ⟨ ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) ⟩
38 30 37 cpr { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) ⟩ }
39 26 25 38 csb { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) ⟩ }
40 6 5 39 csb ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) ⟩ }
41 1 2 40 cmpt ( 𝑛 ∈ ℕ ↦ ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) ⟩ } )
42 0 41 wceq DChr = ( 𝑛 ∈ ℕ ↦ ( ℤ/nℤ ‘ 𝑛 ) / 𝑧 { 𝑥 ∈ ( ( mulGrp ‘ 𝑧 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( ( Base ‘ 𝑧 ) ∖ ( Unit ‘ 𝑧 ) ) × { 0 } ) ⊆ 𝑥 } / 𝑏 { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( ∘f · ↾ ( 𝑏 × 𝑏 ) ) ⟩ } )