| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdecpmat |
⊢ decompPMat |
| 1 |
|
vm |
⊢ 𝑚 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vk |
⊢ 𝑘 |
| 4 |
|
cn0 |
⊢ ℕ0 |
| 5 |
|
vi |
⊢ 𝑖 |
| 6 |
1
|
cv |
⊢ 𝑚 |
| 7 |
6
|
cdm |
⊢ dom 𝑚 |
| 8 |
7
|
cdm |
⊢ dom dom 𝑚 |
| 9 |
|
vj |
⊢ 𝑗 |
| 10 |
|
cco1 |
⊢ coe1 |
| 11 |
5
|
cv |
⊢ 𝑖 |
| 12 |
9
|
cv |
⊢ 𝑗 |
| 13 |
11 12 6
|
co |
⊢ ( 𝑖 𝑚 𝑗 ) |
| 14 |
13 10
|
cfv |
⊢ ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) |
| 15 |
3
|
cv |
⊢ 𝑘 |
| 16 |
15 14
|
cfv |
⊢ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) |
| 17 |
5 9 8 8 16
|
cmpo |
⊢ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) |
| 18 |
1 3 2 4 17
|
cmpo |
⊢ ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 19 |
0 18
|
wceq |
⊢ decompPMat = ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) |