Step |
Hyp |
Ref |
Expression |
0 |
|
cdecpmat |
⊢ decompPMat |
1 |
|
vm |
⊢ 𝑚 |
2 |
|
cvv |
⊢ V |
3 |
|
vk |
⊢ 𝑘 |
4 |
|
cn0 |
⊢ ℕ0 |
5 |
|
vi |
⊢ 𝑖 |
6 |
1
|
cv |
⊢ 𝑚 |
7 |
6
|
cdm |
⊢ dom 𝑚 |
8 |
7
|
cdm |
⊢ dom dom 𝑚 |
9 |
|
vj |
⊢ 𝑗 |
10 |
|
cco1 |
⊢ coe1 |
11 |
5
|
cv |
⊢ 𝑖 |
12 |
9
|
cv |
⊢ 𝑗 |
13 |
11 12 6
|
co |
⊢ ( 𝑖 𝑚 𝑗 ) |
14 |
13 10
|
cfv |
⊢ ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) |
15 |
3
|
cv |
⊢ 𝑘 |
16 |
15 14
|
cfv |
⊢ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) |
17 |
5 9 8 8 16
|
cmpo |
⊢ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) |
18 |
1 3 2 4 17
|
cmpo |
⊢ ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) |
19 |
0 18
|
wceq |
⊢ decompPMat = ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) |