Metamath Proof Explorer


Definition df-decpmat

Description: Define the decomposition of polynomial matrices. This function collects the coefficients of a polynomial matrix m belong to the k th power of the polynomial variable for each entry of m . (Contributed by AV, 2-Dec-2019)

Ref Expression
Assertion df-decpmat decompPMat = ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdecpmat decompPMat
1 vm 𝑚
2 cvv V
3 vk 𝑘
4 cn0 0
5 vi 𝑖
6 1 cv 𝑚
7 6 cdm dom 𝑚
8 7 cdm dom dom 𝑚
9 vj 𝑗
10 cco1 coe1
11 5 cv 𝑖
12 9 cv 𝑗
13 11 12 6 co ( 𝑖 𝑚 𝑗 )
14 13 10 cfv ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) )
15 3 cv 𝑘
16 15 14 cfv ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 )
17 5 9 8 8 16 cmpo ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )
18 1 3 2 4 17 cmpo ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )
19 0 18 wceq decompPMat = ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) )