Metamath Proof Explorer


Definition df-dilN

Description: Define set of all dilations. Definition of dilation in Crawley p. 111. (Contributed by NM, 30-Jan-2012)

Ref Expression
Assertion df-dilN Dil = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdilN Dil
1 vk 𝑘
2 cvv V
3 vd 𝑑
4 catm Atoms
5 1 cv 𝑘
6 5 4 cfv ( Atoms ‘ 𝑘 )
7 vf 𝑓
8 cpautN PAut
9 5 8 cfv ( PAut ‘ 𝑘 )
10 vx 𝑥
11 cpsubsp PSubSp
12 5 11 cfv ( PSubSp ‘ 𝑘 )
13 10 cv 𝑥
14 cwpointsN WAtoms
15 5 14 cfv ( WAtoms ‘ 𝑘 )
16 3 cv 𝑑
17 16 15 cfv ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 )
18 13 17 wss 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 )
19 7 cv 𝑓
20 13 19 cfv ( 𝑓𝑥 )
21 20 13 wceq ( 𝑓𝑥 ) = 𝑥
22 18 21 wi ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓𝑥 ) = 𝑥 )
23 22 10 12 wral 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓𝑥 ) = 𝑥 )
24 23 7 9 crab { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) }
25 3 6 24 cmpt ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } )
26 1 2 25 cmpt ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } ) )
27 0 26 wceq Dil = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓𝑥 ) = 𝑥 ) } ) )