Step |
Hyp |
Ref |
Expression |
0 |
|
cdilN |
⊢ Dil |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vd |
⊢ 𝑑 |
4 |
|
catm |
⊢ Atoms |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
7 |
|
vf |
⊢ 𝑓 |
8 |
|
cpautN |
⊢ PAut |
9 |
5 8
|
cfv |
⊢ ( PAut ‘ 𝑘 ) |
10 |
|
vx |
⊢ 𝑥 |
11 |
|
cpsubsp |
⊢ PSubSp |
12 |
5 11
|
cfv |
⊢ ( PSubSp ‘ 𝑘 ) |
13 |
10
|
cv |
⊢ 𝑥 |
14 |
|
cwpointsN |
⊢ WAtoms |
15 |
5 14
|
cfv |
⊢ ( WAtoms ‘ 𝑘 ) |
16 |
3
|
cv |
⊢ 𝑑 |
17 |
16 15
|
cfv |
⊢ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) |
18 |
13 17
|
wss |
⊢ 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) |
19 |
7
|
cv |
⊢ 𝑓 |
20 |
13 19
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
21 |
20 13
|
wceq |
⊢ ( 𝑓 ‘ 𝑥 ) = 𝑥 |
22 |
18 21
|
wi |
⊢ ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) |
23 |
22 10 12
|
wral |
⊢ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) |
24 |
23 7 9
|
crab |
⊢ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } |
25 |
3 6 24
|
cmpt |
⊢ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
26 |
1 2 25
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
27 |
0 26
|
wceq |
⊢ Dil = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ { 𝑓 ∈ ( PAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ ( ( WAtoms ‘ 𝑘 ) ‘ 𝑑 ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |