Step |
Hyp |
Ref |
Expression |
0 |
|
cdip |
⊢ ·𝑖OLD |
1 |
|
vu |
⊢ 𝑢 |
2 |
|
cnv |
⊢ NrmCVec |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cba |
⊢ BaseSet |
5 |
1
|
cv |
⊢ 𝑢 |
6 |
5 4
|
cfv |
⊢ ( BaseSet ‘ 𝑢 ) |
7 |
|
vy |
⊢ 𝑦 |
8 |
|
vk |
⊢ 𝑘 |
9 |
|
c1 |
⊢ 1 |
10 |
|
cfz |
⊢ ... |
11 |
|
c4 |
⊢ 4 |
12 |
9 11 10
|
co |
⊢ ( 1 ... 4 ) |
13 |
|
ci |
⊢ i |
14 |
|
cexp |
⊢ ↑ |
15 |
8
|
cv |
⊢ 𝑘 |
16 |
13 15 14
|
co |
⊢ ( i ↑ 𝑘 ) |
17 |
|
cmul |
⊢ · |
18 |
|
cnmcv |
⊢ normCV |
19 |
5 18
|
cfv |
⊢ ( normCV ‘ 𝑢 ) |
20 |
3
|
cv |
⊢ 𝑥 |
21 |
|
cpv |
⊢ +𝑣 |
22 |
5 21
|
cfv |
⊢ ( +𝑣 ‘ 𝑢 ) |
23 |
|
cns |
⊢ ·𝑠OLD |
24 |
5 23
|
cfv |
⊢ ( ·𝑠OLD ‘ 𝑢 ) |
25 |
7
|
cv |
⊢ 𝑦 |
26 |
16 25 24
|
co |
⊢ ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) |
27 |
20 26 22
|
co |
⊢ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) |
28 |
27 19
|
cfv |
⊢ ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) |
29 |
|
c2 |
⊢ 2 |
30 |
28 29 14
|
co |
⊢ ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) |
31 |
16 30 17
|
co |
⊢ ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) |
32 |
12 31 8
|
csu |
⊢ Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) |
33 |
|
cdiv |
⊢ / |
34 |
32 11 33
|
co |
⊢ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) |
35 |
3 7 6 6 34
|
cmpo |
⊢ ( 𝑥 ∈ ( BaseSet ‘ 𝑢 ) , 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) |
36 |
1 2 35
|
cmpt |
⊢ ( 𝑢 ∈ NrmCVec ↦ ( 𝑥 ∈ ( BaseSet ‘ 𝑢 ) , 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |
37 |
0 36
|
wceq |
⊢ ·𝑖OLD = ( 𝑢 ∈ NrmCVec ↦ ( 𝑥 ∈ ( BaseSet ‘ 𝑢 ) , 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ↦ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑢 ) ‘ ( 𝑥 ( +𝑣 ‘ 𝑢 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ) ) ↑ 2 ) ) / 4 ) ) ) |