Metamath Proof Explorer


Definition df-disj

Description: A collection of classes B ( x ) is disjoint when for each element y , it is in B ( x ) for at most one x . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion df-disj ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 cA 𝐴
2 cB 𝐵
3 0 1 2 wdisj Disj 𝑥𝐴 𝐵
4 vy 𝑦
5 4 cv 𝑦
6 5 2 wcel 𝑦𝐵
7 6 0 1 wrmo ∃* 𝑥𝐴 𝑦𝐵
8 7 4 wal 𝑦 ∃* 𝑥𝐴 𝑦𝐵
9 3 8 wb ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 )