Metamath Proof Explorer


Definition df-ditg

Description: Define the directed integral, which is just a regular integral but with a sign change when the limits are interchanged. The A and B here are the lower and upper limits of the integral, usually written as a subscript and superscript next to the integral sign. We define the region of integration to be an open interval instead of closed so that we can use +oo , -oo for limits and also integrate up to a singularity at an endpoint. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion df-ditg ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 = if ( 𝐴𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 cC 𝐶
3 vx 𝑥
4 3 0 1 2 cdit ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥
5 cle
6 0 1 5 wbr 𝐴𝐵
7 cioo (,)
8 0 1 7 co ( 𝐴 (,) 𝐵 )
9 3 8 2 citg ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥
10 1 0 7 co ( 𝐵 (,) 𝐴 )
11 3 10 2 citg ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥
12 11 cneg - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥
13 6 9 12 cif if ( 𝐴𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 )
14 4 13 wceq ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 = if ( 𝐴𝐵 , ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 , - ∫ ( 𝐵 (,) 𝐴 ) 𝐶 d 𝑥 )