Metamath Proof Explorer


Definition df-divs

Description: Define surreal division. This is not the definition used in the literature, but we use it here because it is technically easier to work with. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion df-divs /su = ( 𝑥 No , 𝑦 ∈ ( No ∖ { 0s } ) ↦ ( 𝑧 No ( 𝑦 ·s 𝑧 ) = 𝑥 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdivs /su
1 vx 𝑥
2 csur No
3 vy 𝑦
4 c0s 0s
5 4 csn { 0s }
6 2 5 cdif ( No ∖ { 0s } )
7 vz 𝑧
8 3 cv 𝑦
9 cmuls ·s
10 7 cv 𝑧
11 8 10 9 co ( 𝑦 ·s 𝑧 )
12 1 cv 𝑥
13 11 12 wceq ( 𝑦 ·s 𝑧 ) = 𝑥
14 13 7 2 crio ( 𝑧 No ( 𝑦 ·s 𝑧 ) = 𝑥 )
15 1 3 2 6 14 cmpo ( 𝑥 No , 𝑦 ∈ ( No ∖ { 0s } ) ↦ ( 𝑧 No ( 𝑦 ·s 𝑧 ) = 𝑥 ) )
16 0 15 wceq /su = ( 𝑥 No , 𝑦 ∈ ( No ∖ { 0s } ) ↦ ( 𝑧 No ( 𝑦 ·s 𝑧 ) = 𝑥 ) )