Database
SURREAL NUMBERS
Surreal arithmetic
Division
df-divs
Metamath Proof Explorer
Description: Define surreal division. This is not the definition used in the
literature, but we use it here because it is technically easier to work
with. (Contributed by Scott Fenton , 12-Mar-2025)
Ref
Expression
Assertion
df-divs
⊢ /su = ( 𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s } ) ↦ ( ℩ 𝑧 ∈ No ( 𝑦 ·s 𝑧 ) = 𝑥 ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cdivs
⊢ /su
1
vx
⊢ 𝑥
2
csur
⊢ No
3
vy
⊢ 𝑦
4
c0s
⊢ 0s
5
4
csn
⊢ { 0s }
6
2 5
cdif
⊢ ( No ∖ { 0s } )
7
vz
⊢ 𝑧
8
3
cv
⊢ 𝑦
9
cmuls
⊢ ·s
10
7
cv
⊢ 𝑧
11
8 10 9
co
⊢ ( 𝑦 ·s 𝑧 )
12
1
cv
⊢ 𝑥
13
11 12
wceq
⊢ ( 𝑦 ·s 𝑧 ) = 𝑥
14
13 7 2
crio
⊢ ( ℩ 𝑧 ∈ No ( 𝑦 ·s 𝑧 ) = 𝑥 )
15
1 3 2 6 14
cmpo
⊢ ( 𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s } ) ↦ ( ℩ 𝑧 ∈ No ( 𝑦 ·s 𝑧 ) = 𝑥 ) )
16
0 15
wceq
⊢ /su = ( 𝑥 ∈ No , 𝑦 ∈ ( No ∖ { 0s } ) ↦ ( ℩ 𝑧 ∈ No ( 𝑦 ·s 𝑧 ) = 𝑥 ) )