Metamath Proof Explorer


Definition df-dju

Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of A or B , tagging each one with whether it came from A or B . (Contributed by Jim Kingdon, 20-Jun-2022)

Ref Expression
Assertion df-dju ( 𝐴𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 cdju ( 𝐴𝐵 )
3 c0
4 3 csn { ∅ }
5 4 0 cxp ( { ∅ } × 𝐴 )
6 c1o 1o
7 6 csn { 1o }
8 7 1 cxp ( { 1o } × 𝐵 )
9 5 8 cun ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) )
10 2 9 wceq ( 𝐴𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) )