Step |
Hyp |
Ref |
Expression |
0 |
|
cdlat |
⊢ DLat |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
clat |
⊢ Lat |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑘 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
6 |
|
vb |
⊢ 𝑏 |
7 |
|
cjn |
⊢ join |
8 |
4 7
|
cfv |
⊢ ( join ‘ 𝑘 ) |
9 |
|
vj |
⊢ 𝑗 |
10 |
|
cmee |
⊢ meet |
11 |
4 10
|
cfv |
⊢ ( meet ‘ 𝑘 ) |
12 |
|
vm |
⊢ 𝑚 |
13 |
|
vx |
⊢ 𝑥 |
14 |
6
|
cv |
⊢ 𝑏 |
15 |
|
vy |
⊢ 𝑦 |
16 |
|
vz |
⊢ 𝑧 |
17 |
13
|
cv |
⊢ 𝑥 |
18 |
12
|
cv |
⊢ 𝑚 |
19 |
15
|
cv |
⊢ 𝑦 |
20 |
9
|
cv |
⊢ 𝑗 |
21 |
16
|
cv |
⊢ 𝑧 |
22 |
19 21 20
|
co |
⊢ ( 𝑦 𝑗 𝑧 ) |
23 |
17 22 18
|
co |
⊢ ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) |
24 |
17 19 18
|
co |
⊢ ( 𝑥 𝑚 𝑦 ) |
25 |
17 21 18
|
co |
⊢ ( 𝑥 𝑚 𝑧 ) |
26 |
24 25 20
|
co |
⊢ ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
27 |
23 26
|
wceq |
⊢ ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
28 |
27 16 14
|
wral |
⊢ ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
29 |
28 15 14
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
30 |
29 13 14
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
31 |
30 12 11
|
wsbc |
⊢ [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
32 |
31 9 8
|
wsbc |
⊢ [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
33 |
32 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) |
34 |
33 1 2
|
crab |
⊢ { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) } |
35 |
0 34
|
wceq |
⊢ DLat = { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) } |