Metamath Proof Explorer


Definition df-dlat

Description: Adistributive lattice is a lattice in which meets distribute over joins, or equivalently ( latdisd ) joins distribute over meets. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion df-dlat DLat = { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdlat DLat
1 vk 𝑘
2 clat Lat
3 cbs Base
4 1 cv 𝑘
5 4 3 cfv ( Base ‘ 𝑘 )
6 vb 𝑏
7 cjn join
8 4 7 cfv ( join ‘ 𝑘 )
9 vj 𝑗
10 cmee meet
11 4 10 cfv ( meet ‘ 𝑘 )
12 vm 𝑚
13 vx 𝑥
14 6 cv 𝑏
15 vy 𝑦
16 vz 𝑧
17 13 cv 𝑥
18 12 cv 𝑚
19 15 cv 𝑦
20 9 cv 𝑗
21 16 cv 𝑧
22 19 21 20 co ( 𝑦 𝑗 𝑧 )
23 17 22 18 co ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )
24 17 19 18 co ( 𝑥 𝑚 𝑦 )
25 17 21 18 co ( 𝑥 𝑚 𝑧 )
26 24 25 20 co ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )
27 23 26 wceq ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )
28 27 16 14 wral 𝑧𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )
29 28 15 14 wral 𝑦𝑏𝑧𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )
30 29 13 14 wral 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )
31 30 12 11 wsbc [ ( meet ‘ 𝑘 ) / 𝑚 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )
32 31 9 8 wsbc [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )
33 32 6 5 wsbc [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )
34 33 1 2 crab { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) }
35 0 34 wceq DLat = { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ]𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) }