| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cdlat | 
							⊢ DLat  | 
						
						
							| 1 | 
							
								
							 | 
							vk | 
							⊢ 𝑘  | 
						
						
							| 2 | 
							
								
							 | 
							clat | 
							⊢ Lat  | 
						
						
							| 3 | 
							
								
							 | 
							cbs | 
							⊢ Base  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							⊢ 𝑘  | 
						
						
							| 5 | 
							
								4 3
							 | 
							cfv | 
							⊢ ( Base ‘ 𝑘 )  | 
						
						
							| 6 | 
							
								
							 | 
							vb | 
							⊢ 𝑏  | 
						
						
							| 7 | 
							
								
							 | 
							cjn | 
							⊢ join  | 
						
						
							| 8 | 
							
								4 7
							 | 
							cfv | 
							⊢ ( join ‘ 𝑘 )  | 
						
						
							| 9 | 
							
								
							 | 
							vj | 
							⊢ 𝑗  | 
						
						
							| 10 | 
							
								
							 | 
							cmee | 
							⊢ meet  | 
						
						
							| 11 | 
							
								4 10
							 | 
							cfv | 
							⊢ ( meet ‘ 𝑘 )  | 
						
						
							| 12 | 
							
								
							 | 
							vm | 
							⊢ 𝑚  | 
						
						
							| 13 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 14 | 
							
								6
							 | 
							cv | 
							⊢ 𝑏  | 
						
						
							| 15 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 16 | 
							
								
							 | 
							vz | 
							⊢ 𝑧  | 
						
						
							| 17 | 
							
								13
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 18 | 
							
								12
							 | 
							cv | 
							⊢ 𝑚  | 
						
						
							| 19 | 
							
								15
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 20 | 
							
								9
							 | 
							cv | 
							⊢ 𝑗  | 
						
						
							| 21 | 
							
								16
							 | 
							cv | 
							⊢ 𝑧  | 
						
						
							| 22 | 
							
								19 21 20
							 | 
							co | 
							⊢ ( 𝑦 𝑗 𝑧 )  | 
						
						
							| 23 | 
							
								17 22 18
							 | 
							co | 
							⊢ ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  | 
						
						
							| 24 | 
							
								17 19 18
							 | 
							co | 
							⊢ ( 𝑥 𝑚 𝑦 )  | 
						
						
							| 25 | 
							
								17 21 18
							 | 
							co | 
							⊢ ( 𝑥 𝑚 𝑧 )  | 
						
						
							| 26 | 
							
								24 25 20
							 | 
							co | 
							⊢ ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							wceq | 
							⊢ ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  =  ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )  | 
						
						
							| 28 | 
							
								27 16 14
							 | 
							wral | 
							⊢ ∀ 𝑧  ∈  𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  =  ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )  | 
						
						
							| 29 | 
							
								28 15 14
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  =  ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )  | 
						
						
							| 30 | 
							
								29 13 14
							 | 
							wral | 
							⊢ ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  =  ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )  | 
						
						
							| 31 | 
							
								30 12 11
							 | 
							wsbc | 
							⊢ [ ( meet ‘ 𝑘 )  /  𝑚 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  =  ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )  | 
						
						
							| 32 | 
							
								31 9 8
							 | 
							wsbc | 
							⊢ [ ( join ‘ 𝑘 )  /  𝑗 ] [ ( meet ‘ 𝑘 )  /  𝑚 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  =  ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )  | 
						
						
							| 33 | 
							
								32 6 5
							 | 
							wsbc | 
							⊢ [ ( Base ‘ 𝑘 )  /  𝑏 ] [ ( join ‘ 𝑘 )  /  𝑗 ] [ ( meet ‘ 𝑘 )  /  𝑚 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  =  ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) )  | 
						
						
							| 34 | 
							
								33 1 2
							 | 
							crab | 
							⊢ { 𝑘  ∈  Lat  ∣  [ ( Base ‘ 𝑘 )  /  𝑏 ] [ ( join ‘ 𝑘 )  /  𝑗 ] [ ( meet ‘ 𝑘 )  /  𝑚 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  =  ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) }  | 
						
						
							| 35 | 
							
								0 34
							 | 
							wceq | 
							⊢ DLat  =  { 𝑘  ∈  Lat  ∣  [ ( Base ‘ 𝑘 )  /  𝑏 ] [ ( join ‘ 𝑘 )  /  𝑗 ] [ ( meet ‘ 𝑘 )  /  𝑚 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∀ 𝑧  ∈  𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) )  =  ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) }  |