Metamath Proof Explorer


Definition df-dmat

Description: Define the set of n x n diagonal (square) matrices over a set (usually a ring) r, see definition in Roman p. 4 or Definition 3.12 in Hefferon p. 240. (Contributed by AV, 8-Dec-2019)

Ref Expression
Assertion df-dmat DMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdmat DMat
1 vn 𝑛
2 cfn Fin
3 vr 𝑟
4 cvv V
5 vm 𝑚
6 cbs Base
7 1 cv 𝑛
8 cmat Mat
9 3 cv 𝑟
10 7 9 8 co ( 𝑛 Mat 𝑟 )
11 10 6 cfv ( Base ‘ ( 𝑛 Mat 𝑟 ) )
12 vi 𝑖
13 vj 𝑗
14 12 cv 𝑖
15 13 cv 𝑗
16 14 15 wne 𝑖𝑗
17 5 cv 𝑚
18 14 15 17 co ( 𝑖 𝑚 𝑗 )
19 c0g 0g
20 9 19 cfv ( 0g𝑟 )
21 18 20 wceq ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 )
22 16 21 wi ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) )
23 22 13 7 wral 𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) )
24 23 12 7 wral 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) )
25 24 5 11 crab { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) }
26 1 3 2 4 25 cmpo ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } )
27 0 26 wceq DMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖𝑛𝑗𝑛 ( 𝑖𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g𝑟 ) ) } )