| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdmat |
⊢ DMat |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cfn |
⊢ Fin |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
cvv |
⊢ V |
| 5 |
|
vm |
⊢ 𝑚 |
| 6 |
|
cbs |
⊢ Base |
| 7 |
1
|
cv |
⊢ 𝑛 |
| 8 |
|
cmat |
⊢ Mat |
| 9 |
3
|
cv |
⊢ 𝑟 |
| 10 |
7 9 8
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
| 11 |
10 6
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
| 12 |
|
vi |
⊢ 𝑖 |
| 13 |
|
vj |
⊢ 𝑗 |
| 14 |
12
|
cv |
⊢ 𝑖 |
| 15 |
13
|
cv |
⊢ 𝑗 |
| 16 |
14 15
|
wne |
⊢ 𝑖 ≠ 𝑗 |
| 17 |
5
|
cv |
⊢ 𝑚 |
| 18 |
14 15 17
|
co |
⊢ ( 𝑖 𝑚 𝑗 ) |
| 19 |
|
c0g |
⊢ 0g |
| 20 |
9 19
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
| 21 |
18 20
|
wceq |
⊢ ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) |
| 22 |
16 21
|
wi |
⊢ ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) |
| 23 |
22 13 7
|
wral |
⊢ ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) |
| 24 |
23 12 7
|
wral |
⊢ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) |
| 25 |
24 5 11
|
crab |
⊢ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } |
| 26 |
1 3 2 4 25
|
cmpo |
⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) |
| 27 |
0 26
|
wceq |
⊢ DMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) |