Step |
Hyp |
Ref |
Expression |
0 |
|
cdmat |
⊢ DMat |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cfn |
⊢ Fin |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
cvv |
⊢ V |
5 |
|
vm |
⊢ 𝑚 |
6 |
|
cbs |
⊢ Base |
7 |
1
|
cv |
⊢ 𝑛 |
8 |
|
cmat |
⊢ Mat |
9 |
3
|
cv |
⊢ 𝑟 |
10 |
7 9 8
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
11 |
10 6
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
12 |
|
vi |
⊢ 𝑖 |
13 |
|
vj |
⊢ 𝑗 |
14 |
12
|
cv |
⊢ 𝑖 |
15 |
13
|
cv |
⊢ 𝑗 |
16 |
14 15
|
wne |
⊢ 𝑖 ≠ 𝑗 |
17 |
5
|
cv |
⊢ 𝑚 |
18 |
14 15 17
|
co |
⊢ ( 𝑖 𝑚 𝑗 ) |
19 |
|
c0g |
⊢ 0g |
20 |
9 19
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
21 |
18 20
|
wceq |
⊢ ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) |
22 |
16 21
|
wi |
⊢ ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) |
23 |
22 13 7
|
wral |
⊢ ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) |
24 |
23 12 7
|
wral |
⊢ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) |
25 |
24 5 11
|
crab |
⊢ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } |
26 |
1 3 2 4 25
|
cmpo |
⊢ ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) |
27 |
0 26
|
wceq |
⊢ DMat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ { 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ∣ ∀ 𝑖 ∈ 𝑛 ∀ 𝑗 ∈ 𝑛 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑚 𝑗 ) = ( 0g ‘ 𝑟 ) ) } ) |