Metamath Proof Explorer


Definition df-dmd

Description: Define the dual modular pair relation (on the Hilbert lattice). Definition 1.1 of MaedaMaeda p. 1, who use the notation (x,y)M* for "the ordered pair is a dual modular pair." See dmdbr for membership relation. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion df-dmd 𝑀* = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥C𝑦C ) ∧ ∀ 𝑧C ( 𝑦𝑧 → ( ( 𝑧𝑥 ) ∨ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 𝑦 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdmd 𝑀*
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 cch C
5 3 4 wcel 𝑥C
6 2 cv 𝑦
7 6 4 wcel 𝑦C
8 5 7 wa ( 𝑥C𝑦C )
9 vz 𝑧
10 9 cv 𝑧
11 6 10 wss 𝑦𝑧
12 10 3 cin ( 𝑧𝑥 )
13 chj
14 12 6 13 co ( ( 𝑧𝑥 ) ∨ 𝑦 )
15 3 6 13 co ( 𝑥 𝑦 )
16 10 15 cin ( 𝑧 ∩ ( 𝑥 𝑦 ) )
17 14 16 wceq ( ( 𝑧𝑥 ) ∨ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 𝑦 ) )
18 11 17 wi ( 𝑦𝑧 → ( ( 𝑧𝑥 ) ∨ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 𝑦 ) ) )
19 18 9 4 wral 𝑧C ( 𝑦𝑧 → ( ( 𝑧𝑥 ) ∨ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 𝑦 ) ) )
20 8 19 wa ( ( 𝑥C𝑦C ) ∧ ∀ 𝑧C ( 𝑦𝑧 → ( ( 𝑧𝑥 ) ∨ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 𝑦 ) ) ) )
21 20 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥C𝑦C ) ∧ ∀ 𝑧C ( 𝑦𝑧 → ( ( 𝑧𝑥 ) ∨ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 𝑦 ) ) ) ) }
22 0 21 wceq 𝑀* = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥C𝑦C ) ∧ ∀ 𝑧C ( 𝑦𝑧 → ( ( 𝑧𝑥 ) ∨ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 𝑦 ) ) ) ) }