Step |
Hyp |
Ref |
Expression |
0 |
|
cdmd |
⊢ 𝑀ℋ* |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
vy |
⊢ 𝑦 |
3 |
1
|
cv |
⊢ 𝑥 |
4 |
|
cch |
⊢ Cℋ |
5 |
3 4
|
wcel |
⊢ 𝑥 ∈ Cℋ |
6 |
2
|
cv |
⊢ 𝑦 |
7 |
6 4
|
wcel |
⊢ 𝑦 ∈ Cℋ |
8 |
5 7
|
wa |
⊢ ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) |
9 |
|
vz |
⊢ 𝑧 |
10 |
9
|
cv |
⊢ 𝑧 |
11 |
6 10
|
wss |
⊢ 𝑦 ⊆ 𝑧 |
12 |
10 3
|
cin |
⊢ ( 𝑧 ∩ 𝑥 ) |
13 |
|
chj |
⊢ ∨ℋ |
14 |
12 6 13
|
co |
⊢ ( ( 𝑧 ∩ 𝑥 ) ∨ℋ 𝑦 ) |
15 |
3 6 13
|
co |
⊢ ( 𝑥 ∨ℋ 𝑦 ) |
16 |
10 15
|
cin |
⊢ ( 𝑧 ∩ ( 𝑥 ∨ℋ 𝑦 ) ) |
17 |
14 16
|
wceq |
⊢ ( ( 𝑧 ∩ 𝑥 ) ∨ℋ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 ∨ℋ 𝑦 ) ) |
18 |
11 17
|
wi |
⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝑧 ∩ 𝑥 ) ∨ℋ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 ∨ℋ 𝑦 ) ) ) |
19 |
18 9 4
|
wral |
⊢ ∀ 𝑧 ∈ Cℋ ( 𝑦 ⊆ 𝑧 → ( ( 𝑧 ∩ 𝑥 ) ∨ℋ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 ∨ℋ 𝑦 ) ) ) |
20 |
8 19
|
wa |
⊢ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀ 𝑧 ∈ Cℋ ( 𝑦 ⊆ 𝑧 → ( ( 𝑧 ∩ 𝑥 ) ∨ℋ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 ∨ℋ 𝑦 ) ) ) ) |
21 |
20 1 2
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀ 𝑧 ∈ Cℋ ( 𝑦 ⊆ 𝑧 → ( ( 𝑧 ∩ 𝑥 ) ∨ℋ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 ∨ℋ 𝑦 ) ) ) ) } |
22 |
0 21
|
wceq |
⊢ 𝑀ℋ* = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀ 𝑧 ∈ Cℋ ( 𝑦 ⊆ 𝑧 → ( ( 𝑧 ∩ 𝑥 ) ∨ℋ 𝑦 ) = ( 𝑧 ∩ ( 𝑥 ∨ℋ 𝑦 ) ) ) ) } |