Metamath Proof Explorer


Definition df-dom

Description: Define the dominance relation. For an alternate definition see dfdom2 . Compare Definition of Enderton p. 145. Typical textbook definitions are derived as brdom and domen . (Contributed by NM, 28-Mar-1998)

Ref Expression
Assertion df-dom ≼ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdom
1 vx 𝑥
2 vy 𝑦
3 vf 𝑓
4 3 cv 𝑓
5 1 cv 𝑥
6 2 cv 𝑦
7 5 6 4 wf1 𝑓 : 𝑥1-1𝑦
8 7 3 wex 𝑓 𝑓 : 𝑥1-1𝑦
9 8 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 }
10 0 9 wceq ≼ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 }