Step |
Hyp |
Ref |
Expression |
0 |
|
cdomn |
⊢ Domn |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cnzr |
⊢ NzRing |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑟 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
6 |
|
vb |
⊢ 𝑏 |
7 |
|
c0g |
⊢ 0g |
8 |
4 7
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
9 |
|
vz |
⊢ 𝑧 |
10 |
|
vx |
⊢ 𝑥 |
11 |
6
|
cv |
⊢ 𝑏 |
12 |
|
vy |
⊢ 𝑦 |
13 |
10
|
cv |
⊢ 𝑥 |
14 |
|
cmulr |
⊢ .r |
15 |
4 14
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
16 |
12
|
cv |
⊢ 𝑦 |
17 |
13 16 15
|
co |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
18 |
9
|
cv |
⊢ 𝑧 |
19 |
17 18
|
wceq |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 |
20 |
13 18
|
wceq |
⊢ 𝑥 = 𝑧 |
21 |
16 18
|
wceq |
⊢ 𝑦 = 𝑧 |
22 |
20 21
|
wo |
⊢ ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) |
23 |
19 22
|
wi |
⊢ ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
24 |
23 12 11
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
25 |
24 10 11
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
26 |
25 9 8
|
wsbc |
⊢ [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
27 |
26 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
28 |
27 1 2
|
crab |
⊢ { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) } |
29 |
0 28
|
wceq |
⊢ Domn = { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) } |