Step |
Hyp |
Ref |
Expression |
0 |
|
cdprd |
⊢ DProd |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cgrp |
⊢ Grp |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
vh |
⊢ ℎ |
5 |
4
|
cv |
⊢ ℎ |
6 |
5
|
cdm |
⊢ dom ℎ |
7 |
|
csubg |
⊢ SubGrp |
8 |
1
|
cv |
⊢ 𝑔 |
9 |
8 7
|
cfv |
⊢ ( SubGrp ‘ 𝑔 ) |
10 |
6 9 5
|
wf |
⊢ ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) |
11 |
|
vx |
⊢ 𝑥 |
12 |
|
vy |
⊢ 𝑦 |
13 |
11
|
cv |
⊢ 𝑥 |
14 |
13
|
csn |
⊢ { 𝑥 } |
15 |
6 14
|
cdif |
⊢ ( dom ℎ ∖ { 𝑥 } ) |
16 |
13 5
|
cfv |
⊢ ( ℎ ‘ 𝑥 ) |
17 |
|
ccntz |
⊢ Cntz |
18 |
8 17
|
cfv |
⊢ ( Cntz ‘ 𝑔 ) |
19 |
12
|
cv |
⊢ 𝑦 |
20 |
19 5
|
cfv |
⊢ ( ℎ ‘ 𝑦 ) |
21 |
20 18
|
cfv |
⊢ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) |
22 |
16 21
|
wss |
⊢ ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) |
23 |
22 12 15
|
wral |
⊢ ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) |
24 |
|
cmrc |
⊢ mrCls |
25 |
9 24
|
cfv |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) |
26 |
5 15
|
cima |
⊢ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) |
27 |
26
|
cuni |
⊢ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) |
28 |
27 25
|
cfv |
⊢ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) |
29 |
16 28
|
cin |
⊢ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) |
30 |
|
c0g |
⊢ 0g |
31 |
8 30
|
cfv |
⊢ ( 0g ‘ 𝑔 ) |
32 |
31
|
csn |
⊢ { ( 0g ‘ 𝑔 ) } |
33 |
29 32
|
wceq |
⊢ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } |
34 |
23 33
|
wa |
⊢ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) |
35 |
34 11 6
|
wral |
⊢ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) |
36 |
10 35
|
wa |
⊢ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) |
37 |
36 4
|
cab |
⊢ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } |
38 |
|
vf |
⊢ 𝑓 |
39 |
3
|
cv |
⊢ 𝑠 |
40 |
39
|
cdm |
⊢ dom 𝑠 |
41 |
13 39
|
cfv |
⊢ ( 𝑠 ‘ 𝑥 ) |
42 |
11 40 41
|
cixp |
⊢ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) |
43 |
|
cfsupp |
⊢ finSupp |
44 |
5 31 43
|
wbr |
⊢ ℎ finSupp ( 0g ‘ 𝑔 ) |
45 |
44 4 42
|
crab |
⊢ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } |
46 |
|
cgsu |
⊢ Σg |
47 |
38
|
cv |
⊢ 𝑓 |
48 |
8 47 46
|
co |
⊢ ( 𝑔 Σg 𝑓 ) |
49 |
38 45 48
|
cmpt |
⊢ ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) |
50 |
49
|
crn |
⊢ ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) |
51 |
1 3 2 37 50
|
cmpo |
⊢ ( 𝑔 ∈ Grp , 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ↦ ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) |
52 |
0 51
|
wceq |
⊢ DProd = ( 𝑔 ∈ Grp , 𝑠 ∈ { ℎ ∣ ( ℎ : dom ℎ ⟶ ( SubGrp ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ dom ℎ ( ∀ 𝑦 ∈ ( dom ℎ ∖ { 𝑥 } ) ( ℎ ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝑔 ) ‘ ( ℎ ‘ 𝑦 ) ) ∧ ( ( ℎ ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝑔 ) ) ‘ ∪ ( ℎ “ ( dom ℎ ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝑔 ) } ) ) } ↦ ran ( 𝑓 ∈ { ℎ ∈ X 𝑥 ∈ dom 𝑠 ( 𝑠 ‘ 𝑥 ) ∣ ℎ finSupp ( 0g ‘ 𝑔 ) } ↦ ( 𝑔 Σg 𝑓 ) ) ) |