Metamath Proof Explorer


Definition df-drs

Description: Define the class of directed sets. A directed set is a nonempty preordered set where every pair of elements have some upper bound. Note that it is not required that there exist aleast upper bound.

There is no consensus in the literature over whether directed sets are allowed to be empty. It is slightly more convenient for us if they are not. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion df-drs Dirset = { 𝑓 ∈ Proset ∣ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdrs Dirset
1 vf 𝑓
2 cproset Proset
3 cbs Base
4 1 cv 𝑓
5 4 3 cfv ( Base ‘ 𝑓 )
6 vb 𝑏
7 cple le
8 4 7 cfv ( le ‘ 𝑓 )
9 vr 𝑟
10 6 cv 𝑏
11 c0
12 10 11 wne 𝑏 ≠ ∅
13 vx 𝑥
14 vy 𝑦
15 vz 𝑧
16 13 cv 𝑥
17 9 cv 𝑟
18 15 cv 𝑧
19 16 18 17 wbr 𝑥 𝑟 𝑧
20 14 cv 𝑦
21 20 18 17 wbr 𝑦 𝑟 𝑧
22 19 21 wa ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 )
23 22 15 10 wrex 𝑧𝑏 ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 )
24 23 14 10 wral 𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 )
25 24 13 10 wral 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 )
26 12 25 wa ( 𝑏 ≠ ∅ ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 ) )
27 26 9 8 wsbc [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 ) )
28 27 6 5 wsbc [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 ) )
29 28 1 2 crab { 𝑓 ∈ Proset ∣ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 ) ) }
30 0 29 wceq Dirset = { 𝑓 ∈ Proset ∣ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ( 𝑏 ≠ ∅ ∧ ∀ 𝑥𝑏𝑦𝑏𝑧𝑏 ( 𝑥 𝑟 𝑧𝑦 𝑟 𝑧 ) ) }