| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdsmm | ⊢  ⊕m | 
						
							| 1 |  | vs | ⊢ 𝑠 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vr | ⊢ 𝑟 | 
						
							| 4 | 1 | cv | ⊢ 𝑠 | 
						
							| 5 |  | cprds | ⊢ Xs | 
						
							| 6 | 3 | cv | ⊢ 𝑟 | 
						
							| 7 | 4 6 5 | co | ⊢ ( 𝑠 Xs 𝑟 ) | 
						
							| 8 |  | cress | ⊢  ↾s | 
						
							| 9 |  | vf | ⊢ 𝑓 | 
						
							| 10 |  | vx | ⊢ 𝑥 | 
						
							| 11 | 6 | cdm | ⊢ dom  𝑟 | 
						
							| 12 |  | cbs | ⊢ Base | 
						
							| 13 | 10 | cv | ⊢ 𝑥 | 
						
							| 14 | 13 6 | cfv | ⊢ ( 𝑟 ‘ 𝑥 ) | 
						
							| 15 | 14 12 | cfv | ⊢ ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) | 
						
							| 16 | 10 11 15 | cixp | ⊢ X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) ) | 
						
							| 17 | 9 | cv | ⊢ 𝑓 | 
						
							| 18 | 13 17 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) | 
						
							| 19 |  | c0g | ⊢ 0g | 
						
							| 20 | 14 19 | cfv | ⊢ ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) | 
						
							| 21 | 18 20 | wne | ⊢ ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) | 
						
							| 22 | 21 10 11 | crab | ⊢ { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) } | 
						
							| 23 |  | cfn | ⊢ Fin | 
						
							| 24 | 22 23 | wcel | ⊢ { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin | 
						
							| 25 | 24 9 16 | crab | ⊢ { 𝑓  ∈  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) )  ∣  { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin } | 
						
							| 26 | 7 25 8 | co | ⊢ ( ( 𝑠 Xs 𝑟 )  ↾s  { 𝑓  ∈  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) )  ∣  { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin } ) | 
						
							| 27 | 1 3 2 2 26 | cmpo | ⊢ ( 𝑠  ∈  V ,  𝑟  ∈  V  ↦  ( ( 𝑠 Xs 𝑟 )  ↾s  { 𝑓  ∈  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) )  ∣  { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin } ) ) | 
						
							| 28 | 0 27 | wceq | ⊢  ⊕m   =  ( 𝑠  ∈  V ,  𝑟  ∈  V  ↦  ( ( 𝑠 Xs 𝑟 )  ↾s  { 𝑓  ∈  X 𝑥  ∈  dom  𝑟 ( Base ‘ ( 𝑟 ‘ 𝑥 ) )  ∣  { 𝑥  ∈  dom  𝑟  ∣  ( 𝑓 ‘ 𝑥 )  ≠  ( 0g ‘ ( 𝑟 ‘ 𝑥 ) ) }  ∈  Fin } ) ) |