Step |
Hyp |
Ref |
Expression |
0 |
|
cdv |
⊢ D |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cc |
⊢ ℂ |
3 |
2
|
cpw |
⊢ 𝒫 ℂ |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
cpm |
⊢ ↑pm |
6 |
1
|
cv |
⊢ 𝑠 |
7 |
2 6 5
|
co |
⊢ ( ℂ ↑pm 𝑠 ) |
8 |
|
vx |
⊢ 𝑥 |
9 |
|
cnt |
⊢ int |
10 |
|
ctopn |
⊢ TopOpen |
11 |
|
ccnfld |
⊢ ℂfld |
12 |
11 10
|
cfv |
⊢ ( TopOpen ‘ ℂfld ) |
13 |
|
crest |
⊢ ↾t |
14 |
12 6 13
|
co |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) |
15 |
14 9
|
cfv |
⊢ ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) |
16 |
4
|
cv |
⊢ 𝑓 |
17 |
16
|
cdm |
⊢ dom 𝑓 |
18 |
17 15
|
cfv |
⊢ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) |
19 |
8
|
cv |
⊢ 𝑥 |
20 |
19
|
csn |
⊢ { 𝑥 } |
21 |
|
vz |
⊢ 𝑧 |
22 |
17 20
|
cdif |
⊢ ( dom 𝑓 ∖ { 𝑥 } ) |
23 |
21
|
cv |
⊢ 𝑧 |
24 |
23 16
|
cfv |
⊢ ( 𝑓 ‘ 𝑧 ) |
25 |
|
cmin |
⊢ − |
26 |
19 16
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
27 |
24 26 25
|
co |
⊢ ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) |
28 |
|
cdiv |
⊢ / |
29 |
23 19 25
|
co |
⊢ ( 𝑧 − 𝑥 ) |
30 |
27 29 28
|
co |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) |
31 |
21 22 30
|
cmpt |
⊢ ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
32 |
|
climc |
⊢ limℂ |
33 |
31 19 32
|
co |
⊢ ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) |
34 |
20 33
|
cxp |
⊢ ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
35 |
8 18 34
|
ciun |
⊢ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
36 |
1 4 3 7 35
|
cmpo |
⊢ ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |
37 |
0 36
|
wceq |
⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) |