Metamath Proof Explorer


Definition df-dv

Description: Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set s here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of CC and is well-behaved when s contains no isolated points, we will restrict our attention to the cases s = RR or s = CC for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014)

Ref Expression
Assertion df-dv D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) ) / ( 𝑧𝑥 ) ) ) lim 𝑥 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdv D
1 vs 𝑠
2 cc
3 2 cpw 𝒫 ℂ
4 vf 𝑓
5 cpm pm
6 1 cv 𝑠
7 2 6 5 co ( ℂ ↑pm 𝑠 )
8 vx 𝑥
9 cnt int
10 ctopn TopOpen
11 ccnfld fld
12 11 10 cfv ( TopOpen ‘ ℂfld )
13 crest t
14 12 6 13 co ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 )
15 14 9 cfv ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) )
16 4 cv 𝑓
17 16 cdm dom 𝑓
18 17 15 cfv ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 )
19 8 cv 𝑥
20 19 csn { 𝑥 }
21 vz 𝑧
22 17 20 cdif ( dom 𝑓 ∖ { 𝑥 } )
23 21 cv 𝑧
24 23 16 cfv ( 𝑓𝑧 )
25 cmin
26 19 16 cfv ( 𝑓𝑥 )
27 24 26 25 co ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) )
28 cdiv /
29 23 19 25 co ( 𝑧𝑥 )
30 27 29 28 co ( ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) ) / ( 𝑧𝑥 ) )
31 21 22 30 cmpt ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) ) / ( 𝑧𝑥 ) ) )
32 climc lim
33 31 19 32 co ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) ) / ( 𝑧𝑥 ) ) ) lim 𝑥 )
34 20 33 cxp ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) ) / ( 𝑧𝑥 ) ) ) lim 𝑥 ) )
35 8 18 34 ciun 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) ) / ( 𝑧𝑥 ) ) ) lim 𝑥 ) )
36 1 4 3 7 35 cmpo ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) ) / ( 𝑧𝑥 ) ) ) lim 𝑥 ) ) )
37 0 36 wceq D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓𝑧 ) − ( 𝑓𝑥 ) ) / ( 𝑧𝑥 ) ) ) lim 𝑥 ) ) )