Step |
Hyp |
Ref |
Expression |
0 |
|
cdvn |
⊢ D𝑛 |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cc |
⊢ ℂ |
3 |
2
|
cpw |
⊢ 𝒫 ℂ |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
cpm |
⊢ ↑pm |
6 |
1
|
cv |
⊢ 𝑠 |
7 |
2 6 5
|
co |
⊢ ( ℂ ↑pm 𝑠 ) |
8 |
|
cc0 |
⊢ 0 |
9 |
|
vx |
⊢ 𝑥 |
10 |
|
cvv |
⊢ V |
11 |
|
cdv |
⊢ D |
12 |
9
|
cv |
⊢ 𝑥 |
13 |
6 12 11
|
co |
⊢ ( 𝑠 D 𝑥 ) |
14 |
9 10 13
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) |
15 |
|
c1st |
⊢ 1st |
16 |
14 15
|
ccom |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) ∘ 1st ) |
17 |
|
cn0 |
⊢ ℕ0 |
18 |
4
|
cv |
⊢ 𝑓 |
19 |
18
|
csn |
⊢ { 𝑓 } |
20 |
17 19
|
cxp |
⊢ ( ℕ0 × { 𝑓 } ) |
21 |
16 20 8
|
cseq |
⊢ seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝑓 } ) ) |
22 |
1 4 3 7 21
|
cmpo |
⊢ ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝑓 } ) ) ) |
23 |
0 22
|
wceq |
⊢ D𝑛 = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑠 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝑓 } ) ) ) |