Metamath Proof Explorer


Definition df-dvr

Description: Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Assertion df-dvr /r = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r𝑟 ) ( ( invr𝑟 ) ‘ 𝑦 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdvr /r
1 vr 𝑟
2 cvv V
3 vx 𝑥
4 cbs Base
5 1 cv 𝑟
6 5 4 cfv ( Base ‘ 𝑟 )
7 vy 𝑦
8 cui Unit
9 5 8 cfv ( Unit ‘ 𝑟 )
10 3 cv 𝑥
11 cmulr .r
12 5 11 cfv ( .r𝑟 )
13 cinvr invr
14 5 13 cfv ( invr𝑟 )
15 7 cv 𝑦
16 15 14 cfv ( ( invr𝑟 ) ‘ 𝑦 )
17 10 16 12 co ( 𝑥 ( .r𝑟 ) ( ( invr𝑟 ) ‘ 𝑦 ) )
18 3 7 6 9 17 cmpo ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r𝑟 ) ( ( invr𝑟 ) ‘ 𝑦 ) ) )
19 1 2 18 cmpt ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r𝑟 ) ( ( invr𝑟 ) ‘ 𝑦 ) ) ) )
20 0 19 wceq /r = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r𝑟 ) ( ( invr𝑟 ) ‘ 𝑦 ) ) ) )