Metamath Proof Explorer


Definition df-ef

Description: Define the exponential function. Its value at the complex number A is ( expA ) and is called the "exponential of A "; see efval . (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion df-ef exp = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑥𝑘 ) / ( ! ‘ 𝑘 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ce exp
1 vx 𝑥
2 cc
3 vk 𝑘
4 cn0 0
5 1 cv 𝑥
6 cexp
7 3 cv 𝑘
8 5 7 6 co ( 𝑥𝑘 )
9 cdiv /
10 cfa !
11 7 10 cfv ( ! ‘ 𝑘 )
12 8 11 9 co ( ( 𝑥𝑘 ) / ( ! ‘ 𝑘 ) )
13 4 12 3 csu Σ 𝑘 ∈ ℕ0 ( ( 𝑥𝑘 ) / ( ! ‘ 𝑘 ) )
14 1 2 13 cmpt ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑥𝑘 ) / ( ! ‘ 𝑘 ) ) )
15 0 14 wceq exp = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑥𝑘 ) / ( ! ‘ 𝑘 ) ) )