Description: Define the exponential function. Its value at the complex number A is ( expA ) and is called the "exponential of A "; see efval . (Contributed by NM, 14-Mar-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ef | ⊢ exp = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ce | ⊢ exp | |
1 | vx | ⊢ 𝑥 | |
2 | cc | ⊢ ℂ | |
3 | vk | ⊢ 𝑘 | |
4 | cn0 | ⊢ ℕ0 | |
5 | 1 | cv | ⊢ 𝑥 |
6 | cexp | ⊢ ↑ | |
7 | 3 | cv | ⊢ 𝑘 |
8 | 5 7 6 | co | ⊢ ( 𝑥 ↑ 𝑘 ) |
9 | cdiv | ⊢ / | |
10 | cfa | ⊢ ! | |
11 | 7 10 | cfv | ⊢ ( ! ‘ 𝑘 ) |
12 | 8 11 9 | co | ⊢ ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) |
13 | 4 12 3 | csu | ⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) |
14 | 1 2 13 | cmpt | ⊢ ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
15 | 0 14 | wceq | ⊢ exp = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |