Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Operators on Hilbert spaces Linear, continuous, bounded, Hermitian, unitary operators and norms df-eigval  
				
		 
		
			
		 
		Description:   Define the eigenvalue function.  The range of eigval T  is the set
       of eigenvalues of Hilbert space operator T  .  Theorem eigvalcl  shows that ( eigval T ) A  , the eigenvalue associated with
       eigenvector A  , is a complex number.  (Contributed by NM , 11-Mar-2006)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-eigval ⊢   eigval  =  ( 𝑡   ∈  (  ℋ  ↑m    ℋ )  ↦  ( 𝑥   ∈  ( eigvec ‘ 𝑡  )  ↦  ( ( ( 𝑡  ‘ 𝑥  )  · ih 𝑥  )  /  ( ( normℎ  ‘ 𝑥  ) ↑ 2 ) ) ) )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cel ⊢  eigval  
						
							1 
								
							 
							vt ⊢  𝑡   
						
							2 
								
							 
							chba ⊢   ℋ  
						
							3 
								
							 
							cmap ⊢   ↑m    
						
							4 
								2  2  3 
							 
							co ⊢  (  ℋ  ↑m    ℋ )  
						
							5 
								
							 
							vx ⊢  𝑥   
						
							6 
								
							 
							cei ⊢  eigvec  
						
							7 
								1 
							 
							cv ⊢  𝑡   
						
							8 
								7  6 
							 
							cfv ⊢  ( eigvec ‘ 𝑡  )  
						
							9 
								5 
							 
							cv ⊢  𝑥   
						
							10 
								9  7 
							 
							cfv ⊢  ( 𝑡  ‘ 𝑥  )  
						
							11 
								
							 
							csp ⊢   · ih  
						
							12 
								10  9  11 
							 
							co ⊢  ( ( 𝑡  ‘ 𝑥  )  · ih 𝑥  )  
						
							13 
								
							 
							cdiv ⊢   /   
						
							14 
								
							 
							cno ⊢  normℎ   
						
							15 
								9  14 
							 
							cfv ⊢  ( normℎ  ‘ 𝑥  )  
						
							16 
								
							 
							cexp ⊢  ↑  
						
							17 
								
							 
							c2 ⊢  2  
						
							18 
								15  17  16 
							 
							co ⊢  ( ( normℎ  ‘ 𝑥  ) ↑ 2 )  
						
							19 
								12  18  13 
							 
							co ⊢  ( ( ( 𝑡  ‘ 𝑥  )  · ih 𝑥  )  /  ( ( normℎ  ‘ 𝑥  ) ↑ 2 ) )  
						
							20 
								5  8  19 
							 
							cmpt ⊢  ( 𝑥   ∈  ( eigvec ‘ 𝑡  )  ↦  ( ( ( 𝑡  ‘ 𝑥  )  · ih 𝑥  )  /  ( ( normℎ  ‘ 𝑥  ) ↑ 2 ) ) )  
						
							21 
								1  4  20 
							 
							cmpt ⊢  ( 𝑡   ∈  (  ℋ  ↑m    ℋ )  ↦  ( 𝑥   ∈  ( eigvec ‘ 𝑡  )  ↦  ( ( ( 𝑡  ‘ 𝑥  )  · ih 𝑥  )  /  ( ( normℎ  ‘ 𝑥  ) ↑ 2 ) ) ) )  
						
							22 
								0  21 
							 
							wceq ⊢  eigval  =  ( 𝑡   ∈  (  ℋ  ↑m    ℋ )  ↦  ( 𝑥   ∈  ( eigvec ‘ 𝑡  )  ↦  ( ( ( 𝑡  ‘ 𝑥  )  · ih 𝑥  )  /  ( ( normℎ  ‘ 𝑥  ) ↑ 2 ) ) ) )