Metamath Proof Explorer


Definition df-em

Description: Define the Euler-Mascheroni constant, gamma = 0.577.... This is the limit of the series sum_ k e. ( 1 ... m ) ( 1 / k ) - ( logm ) , with a proof that the limit exists in emcl . (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Assertion df-em γ = Σ 𝑘 ∈ ℕ ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cem γ
1 vk 𝑘
2 cn
3 c1 1
4 cdiv /
5 1 cv 𝑘
6 3 5 4 co ( 1 / 𝑘 )
7 cmin
8 clog log
9 caddc +
10 3 6 9 co ( 1 + ( 1 / 𝑘 ) )
11 10 8 cfv ( log ‘ ( 1 + ( 1 / 𝑘 ) ) )
12 6 11 7 co ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) )
13 2 12 1 csu Σ 𝑘 ∈ ℕ ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) )
14 0 13 wceq γ = Σ 𝑘 ∈ ℕ ( ( 1 / 𝑘 ) − ( log ‘ ( 1 + ( 1 / 𝑘 ) ) ) )