Metamath Proof Explorer


Definition df-en

Description: Define the equinumerosity relation. Definition of Enderton p. 129. We define ~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren . (Contributed by NM, 28-Mar-1998)

Ref Expression
Assertion df-en ≈ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cen
1 vx 𝑥
2 vy 𝑦
3 vf 𝑓
4 3 cv 𝑓
5 1 cv 𝑥
6 2 cv 𝑦
7 5 6 4 wf1o 𝑓 : 𝑥1-1-onto𝑦
8 7 3 wex 𝑓 𝑓 : 𝑥1-1-onto𝑦
9 8 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 }
10 0 9 wceq ≈ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 }